Homework No. 6 Solutions

9.1 [.] From (9.2.7) $_{5}H(x) \leq \sum_{\alpha} p(\alpha) \log_{\alpha} q(\alpha)$ Let $q(\alpha) = K$, so $H(x) \leq \log_{\alpha} x$

000001	Symbol a1 a2 a3 a4 a5 ab	Prob. 1 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
0000000	a ₄	1

$$\overline{\chi} = \frac{1}{128} + \frac{1}{128}$$

Entropy H(x) = - & P(xi) log P(xi)

$$\Rightarrow$$
 $\overline{L} = H(X)$
Since $Pi = J^{-li}$, we show $\overline{L} = H(X)$

Hence, entury bound is achieved with equality

L(x) = 2(.25) + 2(.2) + 3(.55) + 3(.15) + 3(.15) + 4(.09) + 4(.07) + 4(.08) = 2.85 but later Codeword 2 p(2)

11

10

101

2 2 2

100

100

1000

1000

1000

1000

1000

1000

4.|a) $0(p||g) = \frac{1}{\xi} p(x) \log \frac{p(x)}{g(x)}$ $= \frac{1}{\xi} p(x) \left[1 - \frac{g(x)}{g(x)}\right] = 0$ $(6) - \lambda(p||g) = \sum p(x) \log \frac{g(x)}{g(x)}$ $= \log \left[\sum p(x) \cdot \frac{g(x)}{g(x)}\right] = 0$ $1 \cdot \lambda(p||g) = 0$