
Department of Electrical & Computer Engineering ECE 245
University of California, Santa Barbara Spring 2011

Shynk
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EXAMPLE FINAL EXAM

INSTRUCTIONS

This exam is open book and open notes. It consists of 4 problems and is worth a total of 160
points. The problems are not of equal difficulty so use discretion in allocating your time. Attempt
to answer all questions in any order.
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1. LINEARLY CONSTRAINED FILTERING (40 points)

Suppose we want to minimize the mean-square error (MSE) subject to the constraint aTw = b where
e(n) = d(n) −wTx(n), w = [w1, . . . , wN ]T is the weight vector, x(n) = [x(n), . . . , x(n − N + 1)]T

is the input signal vector, d(n) is the desired signal, a is a constraint vector, and b is a scalar.

(a) Show that the corresponding cost function can be written as

ξc = ξmin + vTRv + λ(aTv − c) (1)

where ξmin is the minimum MSE for the unconstrained formulation, v = w−wo, wo = R−1p is
the unconstrained Wiener weight vector, R = E[x(n)xT (n)], p = E[x(n)d(n)], c = b−aTwo,
and λ is a Lagrange multiplier.

(b) By minimizing (1) with respect to v and λ, show that the (translated) optimal weight vector
is given by

vc
o = c

R−1a
aTRa

. (2)

Find an expression for the minimum MSE ξc
min and show that the constraint cannot result in

a value lower than the unconstrained minimum MSE ξmin.

(c) Suppose now that we want to derive a least-mean-square (LMS) algorithm that minimizes an
instantaneous estimate of the constrained MSE in (1). The algorithm can be written using
the following two steps:

wc(n) = w(n) + 2µx(n)e(n) (3)
w(n + 1) = wc(n) + u(n) (4)

where wc(n) is an intermediate weight vector (i.e., before the constraint is applied), and µ > 0
is the step-size parameter. By minimizing the energy uT (n)u(n) subject to the constraint
aTw(n + 1) = b, show that

u(n) =
b− aTwc(n)

aTa
a. (5)

(d) By combining (3)-(5) and taking the expectation of both sides of the resulting update equation,
we can write

E[w(n + 1)] = BE[w(n)] + d. (6)

Show that
B = A(I− 2µR) and d = 2µAp +

b a
aTa

(7)

and specify the form of A. The stability of this recursion is governed by the eigenvalues of
the transition matrix B.
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2. LMS ALGORITHM (40 points)

Consider an Nth-order tapped-delay line with input vector x(n) and desired response d(n). As-
sume the coefficients w(n) are adjusted by the least-mean-square (LMS) algorithm with step-size
parameter µ > 0.

(a) Suppose we use the modified LMS algorithm

w(n + 1) = w(n)− g(n + 1) (8)

where g(n + 1) is a smoothed (filtered) estimate of the gradient, as follows:

g(n + 1) = (1− µ)g(n)− µe(n)x(n), (9)

and e(n) = d(n)−wT (n)x(n) is the usual a priori error. Let the Wiener weight vector be wo.
Rewrite (8) and (9) in terms of the translated/rotated weight vector v′(n) = QT [w(n)−wo]
where Q contains the normalized eigenvectors of the input signal autocorrelation matrix
R = E[x(n)xT (n)] = QΛQT , and Λ contains the eigenvalues {λk}. Define the quantities
g′(n) = QTg(n) and x′(n) = QTx(n) in your result. Also define eo(n), the error when
operating with the Wiener weights.

(b) Rewrite your answer from part (a) in the following matrix/vector form, and take the expecta-
tion of each term:

E[u′(n + 1)] = FE[u′(n)] + E[h′(n)] (10)

where

u′(n + 1) =

[
v′(n + 1)
g′(n + 1)

]
. (11)

(Hint: You should rewrite the expression for v′(n+1) so that it is a function of g′(n) instead
of g′(n+1). The matrix F should be a function only of µ and Λ. Note that the independence
assumption has been used.)

(c) Show that E[h′(n)] = 0.
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3. LEAST-SQUARES (40 points)

Let the output vector for an FIR filter with N coefficients be written as y(n) = XT (n)w(n) where

X(n) = [x(1)| · · · |x(n)] (12)

is an N × n matrix containing the filter input vectors up to the present time instant n. The
cost function for the method of least squares (LS) (without weighting) is J(n) = eT (n)e(n) where
e(n) = d(n)− y(n) and d(n) is the desired signal vector.

(a) For the LS method, show that the error vector at the optimal LS weight vector ŵ (i.e., the
weights that minimize J(n)) can be expressed as follows:

ê(n) = [I−P(n)]d(n). (13)

Specify P(n) (which is called a projection matrix).

(b) For large n and λ ≈ 1, it can be shown that

Φ(n) =
n∑

i=1

λn−ix(i)xT (i) ≈
(

1− λn

1− λ

)
R (14)

where R = E[x(n)xT (n)]. Demonstrate that with this approximation, the recursive LS (RLS)
algorithm has the form of Newton’s Method.

(c) Consider the following modified LS cost function:

Jβ(n) =
n∑

i=1

λn−ie2(i) + λnβ[w(n)−w(0)]T [w(n)−w(0)] (15)

where β > 0 is a weighting factor, and w(0) 6= 0 is the initial weight vector. For λ = 1,
find the LS weight vector which minimizes Jβ(n). For notational convenience, define v(n) =
w(n)−w(0) (which is like the usual translated weight vector, but with respect to the initial
weight vector).

(d) For the cost function in part (c) and λ < 1, show how the RLS algorithm for updating the
weight vector w(n) differs from the usual RLS algorithm. (You do not need to show the
version of the RLS algorithm that is based on the matrix inversion lemma.)
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4. LATTICE FILTERING (40 points)

Consider the least-squares (LS) lattice filter with joint-process estimation. Define the backward
residual vector bm+1(i) = [b0(i), . . . , bm(i)]T and the joint-process weight vector km(n) = [k0(n), . . . ,
km(n)]T . The corresponding normal equation is

Dm+1(n)km(n) = tm+1(n) (16)

where Dm+1(n) is a diagonal matrix with nonzero elements {Bm(n)} (the backward residual ener-
gies) and

tm+1(n) =
n∑

i=1

λn−ibm+1(i)d(i) (17)

where 0 < λ ≤ 1 is the forgetting factor, and d(i) is the desired signal.

(a) We know that Dm+1(n) = Lm(n)Φm+1LT
m(n) where Φm+1(n) is the (deterministic) autocor-

relation matrix of the input signal vector um+1(n) (similar to (17)), and Lm(n) is a lower
triangular matrix that depends on the backward prediction coefficients {cm,i}. Show that

tm+1(n) = Lm(n)φm+1(n) (18)

and specify the cross-correlation vector φm+1(n).

(b) Show that
km(n) = L−T

m (n)ŵm(n) = D−1
m+1(n)cT

m(n)φm+1(n) (19)

where ŵm(n) = Φ−1
m+1(n)φm+1(n) are the LS weights for the tapped-delay-line filter, and

cm(n) = [cm,m, . . . , cm,1, 1]T .

(c) Define the scalar ρm(n) = cT
m(n)φm+1(n). By substituting time-update recursions for cT

m(n)
and φm+1(n), show that

ρm(n) = λρm(n− 1) +
bm(n)
γm(n)

em(n) (20)

where γm(n) is the conversion factor, and

em(n) = d(n)−wT
m−1(n)um(n) (21)

is the estimation error based on m− 1 weights.
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