ECE 245 Spring 2011 Shynk H.O. #2

ECE 245 ADAPTIVE FILTER THEORY TENTATIVE COURSE OUTLINE

OPTIMAL FILTERING

Wide-sense stationary signals
Wiener-Hopf equation
Noncausal Wiener filter
Causal Wiener filter
Mean-square-error (MSE) expressions

PERFORMANCE SURFACE

Natural, translated, and rotated coordinate systems Normal form of the correlation matrix R Interpretation of eigenvalues and eigenvectors Stochastic normal equation Stochastic orthogonality principle

STEEPEST DESCENT AND NEWTON'S METHOD

Gradient vector and Hessian matrix Stability conditions for convergence One-step convergence Geometric ratio and time constants

GRADIENT ESTIMATION

Weight-misadjustment method Perturbation P Gradient noise model Misadjustment M

LEAST-MEAN-SQUARE (LMS) ALGORITHM

Convergence in the mean Convergence of the MSE Stability conditions on the step-size parameter μ Misadjustment expressions Modified LMS algorithms

METHOD OF LEAST SQUARES (LS)

Nonrecursive (block) solution Windowing of the data Deterministic normal equation Deterministic orthogonality principle Minimum sum of squared errors Properties of LS estimates

RECURSIVE LEAST SQUARES (RLS)

Exponential weighting λ Prewindowed data Matrix inversion lemma Weight and error recursions Initial conditions Convergence in the mean (bias) Convergence in the mean square Sliding window form

LINEAR PREDICTION

Forward and backward prediction errors Augmented normal equation Levinson-Durbin recursion Reflection coefficients (time-invariant) Lattice realization Step-up and step-down recursions Correlation properties Joint-process estimation Burg formula

ADAPTIVE LATTICE FILTERS

Gradient methods Least-squares approach Augmented normal equation: prewindowed form A priori and a posteriori estimation errors Order updates Gain vector, likelihood variable γ Time updates Joint-process estimation Correlation properties

APPLICATIONS

Linear prediction Adaptive noise canceling System identification Inverse modeling