Department of Electrical \& Computer Engineering University of California, Santa Barbara

ECE 245
Spring 2011
Shynk
H.O. \#11

PROGRAMMING ASSIGNMENT

Due Thursday, June 2, 2011 (4:00 p.m.)

A second-order autoregressive (AR) process $\{u(n)\}$ is described by the following difference equation:

$$
u(n)+a_{1} u(n-1)+a_{2} u(n-2)=v(n)
$$

where $v(n)$ is a white-noise process with zero mean and variance σ_{v}^{2}. The parameters of this process are assigned one of the following three sets of values:
(i) $a_{1}=-0.1, \quad a_{2}=-0.8, \quad \sigma_{v}^{2}=0.27$
(ii) $a_{1}=-0.1636, \quad a_{2}=-0.8, \quad \sigma_{v}^{2}=0.119$
(iii) $a_{1}=-0.196, \quad a_{2}=-0.8, \quad \sigma_{v}^{2}=0.014$

The AR process is applied to a two-weight linear predictor. Repeat Problems $1-3$ below for each set of parameters. Note that only one computer program should be written; use a separate subroutine for each algorithm.

1. Steepest-Descent (SD) Algorithm:

(a) Calculate the eigenvalues of the 2×2 input autocorrelation matrix R. Determine the corresponding stable range for the step-size parameter α.
(b) Using two elements of the weight-error vector (i.e., $v_{1}(n)$ and $\left.v_{2}(n)\right)$ as the variables in the SD algorithm, construct loci for constant values of the mean-square error (MSE). Superimpose the trajectory that describes the change in the coordinates $v_{1}(n)$ and $v_{2}(n)$ with time n, assuming that $\alpha=\alpha_{\max } / 10$ and the initial values of the predictor weights are zero.
(c) Repeat the computations in part (b) using the original weights $w_{1}(n)$ and $w_{2}(n)$ as the variables in the SD algorithm.
(d) Plot the learning curves for the following three step-size parameter values: $\alpha=\alpha_{\max } / 100$, $\alpha=\alpha_{\max } / 50$, and $\alpha=\alpha_{\max } / 10$.

2. Least-Mean-Square (LMS) Algorithm:

(a) What is the stable range of values for the step-size parameter α for convergence in the mean?
(b) What is the stable range of values for the step-size parameter α for convergence in the mean square?
(c) Generate a 1000 -sample sequence representing the AR process $\{u(n)\}$. By averaging over 200 independent trials, plot the MSE learning curves of the LMS algorithm for the following three step-size parameter values: $\alpha=\alpha_{\max } / 1000, \alpha=\alpha_{\max } / 100$, and $\alpha=\alpha_{\text {max }} / 10$.
(d) Estimate the mean values of $w_{1}(\infty)$ and $w_{2}(\infty)$ for the three step-size parameter values in part (c). You may do this by averaging the steady-state values of the weights (obtained from the last iteration) over 200 independent trials of the experiment. Compare your results with the theoretical values.
(e) Repeat parts (a) - (d) using the sign-data LMS algorithm:

$$
W(n+1)=W(n)+\alpha e(n) \operatorname{sgn}[U(n)]
$$

where the signum function retains the sign of each component of $U(n)$.
(f) Repeat parts (c) and (d) using the sign-error LMS algorithm:

$$
W(n+1)=W(n)+\alpha \operatorname{sgn}[e(n)] U(n) .
$$

(g) Repeat parts (c) and (d) using the normalized LMS algorithm:

$$
W(n+1)=W(n)+\alpha \frac{e(n) U(n)}{U^{T}(n) U(n)} .
$$

3. Recursive-Least-Squares (RLS) Algorithm:

(a) Repeat parts (c) and (d) of Problem 2 using the RLS algorithm.
(b) Suppose that the AR parameter a_{1} is made positive; otherwise, its magnitude is left as specified for each of the three cases. How would you assess the effect of this change on the performance of the RLS algorithm?
4. Discussion: Compare and discuss your results. What can you say about the computational complexity and speed of convergence for each algorithm?

