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Abstract-Source separation consists of recovering a set of 
independent signals when only mixtures with unknown coeffi- 
cients are observed. This paper introduces a class of adaptive 
algorithms for source separation that implements an adaptive 
version of equivariant estimation and is henceforth called equi- 
variant adaptive separation via independence (EASI). The EASI 
algorithms are based on the idea of serial updating: This specific 
form of matrix updates systematically yields algorithms with 
a simple structure for both real and complex mixtures. Most 
importantly, the performance of an EASI algorithm does not 
depend on the mixing matrix. In particular, convergence rates, 
stability conditions, and interference rejection levels depend only 
on the (normalized) distributions of the source signals. Closed- 
form expressions of these quantities are given via an asymptotic 
performance analysis. 

The theme of equivariance is stressed throughout the paper. 
The source separation problem has an underlying multiplicative 
structure: The parameter space forms a (matrix) multiplicative 
group. We explore the (favorable) consequences of this fact on im- 
plementation, performance, and optimization of EASI algorithms. 

I. INTRODUCTION 

LIND separation of sources is receiving some attention in B the recent signal processing literature, sometimes under 
different names: blind array processing, signal copy, indepen- 
dent component analysis, waveform preserving estimation. . . 
In all these instances, the underlying model is that of n 
statistically independent signals whose m (possibly noisy) 
linear combinations are observed; the problem consists of 
recovering the original signals from their mixture. 

The ‘blind’ qualification refers to the coefficients of the 
mixture: No a priori information is assumed to be available 
about them. This feature makes the blind approach extremely 
versatile because it does not rely on modeling the underlying 
physical phenomena. In particular, it should be contrasted with 
standard narrowband array processing where a similar data 
model is considered, but the mixture coefficients are assumed 
to depend in a known fashion on the location of the sources. 
When the propagation conditions between sources and sensors, 
the sensor locations, or the receivers characteristics are subject 
to unpredictable variations or are too difficult to model with 
accuracy (think of multipaths in an urban environment), it may 
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Fig. 1. Adapting a separating matrix. 

be safer to resort to a blind procedure for recovering the source 
signals. 

This paper addresses the issue of adaptive source separation 
and considers the case where any additive noise can be ne- 
glected. The signal model then reduces to that of observations 
xt in the form 

Xt=Ast t = l , 2 ,  . . .  (1) 

where xt and st are column vectors of sizes m and n, 
respectively, and A is a m x n matrix. The idea here is that 
vector xt results from measurements by m sensors receiving 
contributions from n sources. Hence, the components of st are 
often termed ‘source signals.’ Matrix A is called the ‘mixing 
matrix.’ 

Adaptive source separation consists in updating an n x m 
matrix Bt such that its output yt 

Yt  = Btxt (2)  

is as close as possible to the vector st of the source signals 
(see Fig. 1). Consider the global system denoted1 Ct, which is 
obtained by chaining the mixing matrix A and the separating 
matrix Bt, that is 

Ct def BtA. (3) 

Ideally, an adaptive source separator should converge to a 
matrix B, such that B,A = I ,  or equivalently, the global 
system Ct should converge to the n x n identity matrix I .  

Outline of the Paper: The main point of this paper is to 
introduce and study ‘serial updating’ algorithms. Defining a 
serial update algorithm consists in specifying an n x n matrix- 
valued function y + H ( y ) ,  which is used for updating Bt 
according to 

(4) 

where, as above, yt is the output of Bt, and At is a sequence 
of positive adaptation steps. 

After some background on the source separation problem in 
Section 11, the serial updating scheme is investigated in Section 

Bt+l = Bt - XtH(Yt)Bt 
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III; it is shown to yield adaptive algorithms whose performance 
is independent of the mixing matrix A. When the algorithm is 
intended to optimize an objective function c(B),  we show that 
the required function H ( . )  may be obtained as the ‘relative 
gradient’ of the objective function. In Section IV, a particular 
function N(.) is obtained from a cumulant-based approach to 
blind identification. This is then generalized in Section V into 
a family of equivariant adaptive source separation algorithms, 
whose stability and asymptotic convergence are studied in 
Section VI. Section VI1 extends all the results to the complex 
case. This is completed in Section VI11 by some numerical 
experiments illustrating the effectiveness of the approach and 
the accuracy of asymptotic analysis. 

11. SOURCE SEPARATION 

A. Assumptions and Notations 
Some notational conventions are as follows: Scalars are in 

lower case, matrices in upper case, and vectors in boldface 
lowercase. The ith component of a vector, say x, is denoted 
IC,. The expectation operator is E and transposition is indicated 
by superscript T. The n x n identity matrix is denoted I .  

The following assumptions hold throughout. 
Assumption 1: Matrix A is full rank with n 5 m. 
Assumption 2: Each component of st is a stationary zero- 

Assumption 3: At each t, the components of st are mutually 

Assumption 4: The components of st have unit variance. 
Some comments are in order. Assumption 3 is the key 

ingredient for source separation. It is a strong statistical 
hypothesis but a physically very plausible one since it is 
expected to be verified whenever the source signals arise 
from physically separated systems. Regarding assumption 4, 
we note that it is only a normalization convention since the 
amplitude of each source signal can be incorporated into A. 
We note that assumptions 2, 3, and 4 combine into 

mean process. 

statistically independent. 

def R, = E[s&] = I .  (5) 

Assumption 1 is expected to hold ‘almost surely’ in any 
physical situation. More important is the existence of A itself 
i.e., the plausibility of observing instantaneous mixtures. 

Instantaneous mixtures occur whenever the difference of 
time of arrival between two sensors can be neglected or 
approximated by a phase shift so that the propagation from 
sources to sensors can be represented by a scalar factor: The 
relation between the emitted signals and the signals received 
on the sensors then amounts to a simple matrix multiplication 
as in (1). This kind of instantaneous mixture is the standard 
model in narrowband array processing. In this context, one 
must then consider complex analytic signals and a complex 
mixing matrix A. For ease of exposition, most of the results 
are derived in the real case; extension to the complex case is 
straightforward and described in Section VII. 

Finally, for source separation to be possible, there are con- 
ditions on the probability distributions of the source signals. 
Since this condition is algorithm-dependent, its formulation is 

deferred to Section VI-A. Anticipating a bit, we mention that 
at most one source signal may be normally distributed. 

Before starting, it is important to mention a technical diffi- 
culty due to the following fact: Without additional information 
(such as spectral content, modulation scheme, etc 
outputs of a separating matrix cannot be ordered since the 
ordering of the source signals is itself immaterial (conven- 
tional); source signals can be at best recovered up to a 
permutation. In addtion, a scalar factor can be exchanged 
between each source signal and the corresponding column of 
matrix A without modifying the observations. Hence, even 
with the normalization convention implied by assumption 4, 
the sign (real case) or the phase (complex case) of each 
signal remains unobservable. This may be formalized using 
the following definitions: Any matrix that is the product of 
a permutation matrix with a diagonal matrix with unit-norm 
diagonal elements is called a quasiidentity matrix; any matrix 
B, is said to be a separating matrix if the product B,A is a 
quasiidentity matrix. 

The adaptive source separation problem then consists of 
updating an n x m matrix Bt such that it converges to a 
separating matrix or, equivalently, such that the global system 
C, = BtA converges to a quasiidentity matrix. The issue of 
indetermination is addressed at length in [l]. 

B. Approaches to Source Separation 
The seminal work on source separation is by Jutten and 

HCrault [2], [3] .  Therein, the separating matrix B is parame- 
terized as B = ( I  + W)-’,  and the off-diagonal entries of W 
are updated with a rule like wt3 + wa3 - Xf(yt)g(y3), where 
f and g are odd functions. If separation is achieved, each 
yz is proportional to some s j  so that by the independence 
assumption, E[f (y,)g(y,)] = Ef(y,)Eg(yj), which cancels 
for symmetrically distributed sources. Hence, any separating 
matrix is an equilibrium point of the algorithm. This kind of 
equilibrium condition also appears in [4]. The Jutten-Hkault 
algorithm is inspired by a neuromimetic approach; this line is 
further followed by Karhunen et al. [5]  and Cichocki et al. 

Nonlinear distortions of the output y also appear when 
the equilibrium condition stems from minimization of some 
measure of independence between the components of y. When 
independence is measured by the cancelation of some fourth- 
order cumulants of the output, cubic nonlinearities show up, 
as in [8] and [9] .  Other nonlineanties are considered in [lo] 
based on information-theoretic ideas. 

When the sources have known differentiable probability 
distribution functions (p.d.f.’s), the maximum likelihood (ML) 
estimator is easily obtained in the i.i.d. case; the (asymptot- 
ically optimal) nonlinearities are the log-derivatives of the 
p.d.f.’s [ I l l .  See also [12] for an ML approach for discrete 
sources in unknown Gaussian noise. 

A generic approach to source separation is based on ‘or- 
thogonal contrast functions.’ In the context of source separa- 
tion, these were introduced by Comon [13] as functions of 
the distribution of y, which are to be optimized under the 
whiteness constraint: R, = EyyT = I .  Comon suggests 

~61, 171. 
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minimizing the squared cross-cumulants of y. This orthogonal 
contrast is also arrived at by Gaeta and Lacoume [14] as 
a Gram-Charlier approximation of the likelihood. A similar 
(and asymptotically equivalent) contrast that can be efficiently 
optimized by a Jacobi-like algorithm, especially in the complex 
case, is described in [15]. 

When the sources have kurtosis of identical signs, simpler 
orthogonal contrasts may be exhibited. For instance, if all 
the sources have a negative kurtosis, it is easily proved that 
minimizing 

i=l ,n  

subject to R, = I is achieved only when B is a separating 
matrix. This contrast is strongly reminiscent of fourth-order 
objectives used in blind equalization [16] and lends itself 
easily to adaptive minimization. It is considered in [8] where 
it is optimized by a deflation technique. The resulting adaptive 
algorithm can be proved to be asymptotically free of spurious 
attractors. 

Before closing this section, other batch estimation tech- 
niques may be mentioned: Higher order cumulants are used 
together with a prewhitening strategy in Tong et al. [l], [17]; 
fourth-order-only approaches are investigated in [ 181 and [19]; 
second-order-only approaches are possible if the sources are 
nonstationary [20] or have different spectra as investigated in 
[21]-[23], [l], and [24] in an adaptive implementation. 

C. Equivariant Source Separation 
The equivariant approach to adaptive source separation 

introduced in this paper is best motivated by first considering 
batch estimation. Assume for simplicity that n = m (as many 
sources as ‘sensors’), and consider the problem of estimating 
matrix A from a batch of T samples X T  = [x ( l ) ,  . . . , x ( T ) ] .  
A blind estimator of A is, by definition, a function of XT 
only. This may be denoted by 

A = A(xT).  (7) 

According to (l), the m x T data matrix XT can be factored as 
X T  = AST with ST = [ s ( l ) ,  . . . , s (T ) ] .  A trivial observation 
is that multiplying the data by some matrix M has the same 
effect as multiplying A itself by M since one has M ( X T )  = 

When a transformation on the data is equivalent to a 
transformation of the parameter, the notion of equivarihnce 
is of relevance (see, for instance, [25]). Note that we are 
dealing here with a simple case where the transformations of 
both the parameter A and on the data set are implemented by 
the same algebraic operation: left multiplication by a matrix. 
Equivariance theory becomes interesting when a whole group 
of transformations can be considered. In the following, we 
consider the group of left multiplication by invertible matrices. 
An estimator behaves ‘equivariantly’ if it produces estimates 
that, under data transformation, are transformed accordingly. 
In the case of interest, a particular estimator A for A is said 

M ( A S T )  = ( M A ) S T .  

Fig. 2. Serial update of a matrix. 

for any invertible n x n matrix M .  The equivariance property 
arises quite naturally in the context of source separation. For 
instance, the ML estimator and estimators based on optimizing 
contrast functions are equivariant [26]. 

The key property shared by equivariant batch estimators for 
source separation is that they offer uniform perjb-mance. This 
is to be understood in the following sense. Assume that the 
source signals are estimated as B(t) = A-’x(t), where A is 
obtained from an equivariant estimator. Then, 

S ( t )  = ( , A ( X ~ ) ) - l x ( t )  = (d (AST) ) - lAS( t )  
= ( A A ( S ~ ) ) - ~ A ~ ( ~ )  = ~ ( s ~ ) - l ~ ( t )  (9) 

where we have only used the equivariance ]property (8). 
The last equality reveals that source signals estimated by 
an equivariant estimator A for a particular realization ST = 
[ s ( l ) ,  . . . , s(T)]  are given by B(t) = A ( S ~ ) - l s ( t ) ,  i.e., they 
depend only on ST but do not depend on the mixing matrix A. 
It follows that in terms of signal separation, the performance of 
an equivariant algorithm does not depend at all on the mixing 
matrix. 

That the performance of a batch algorithm may not depend 
on the ‘hardness’ of the mixture is a very desirable property. 
However, adaptive source separation is addressed here; the 
next section actually shows how ‘uniform performance prop- 
erties’ can be inherited by an adaptive algorithm from a batch 
estimation procedure. 

111. SERIAL MATRIX UPDATING 

A. Serial Updates 
The adaptation rule (4) is termed a ‘serial update’ because 

it reads equivalently Bt+l = ( I  - XtH(y t ) )Bt .  This latter 
multiplicative form evidences that Bt is updated by ‘plugging’ 
matrix I - XtH(y t )  at the output of the current system 
Bt to get the updated system Bt+l (see Fig. 2). On one 
hand, uniform performance of equivariant batclh algorithms 
is a direct consequence of (8), which is a rrtultiplicative 
equation. On the other hand, by the learning rule (4), the 
system Bt is serially updated by left multiplication by matrix 
I -XtH(yt) .  In this sense, serial updating is consistent with the 
multiplicative structure and the key result of Section 11‘1-B is 
that serially updated systems inherit the uniform performance 
property from their batch counterparts. Gradient algorithms are 
ubiquitous in system adaptation. A fully consistent theory of 
equivariant adaptive separation should include an appropriate 
definition of the gradient with respect to a matrix; this is the 
‘relative gradient’ introduced in Section 111-C.‘ 

to be equivariant if it satisfies ‘While this paper was being revised, we became aware of the work [7] using 
a similar updating rule. A ‘natural gradient’ identical to our ‘relative gradient’ 
has also been introduced independently by Amari (private communication). A ( M X T )  = M A ( X * )  (8) 
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3. Serial Updates and Uniform Performance 
The benefits of serial updating are revealed by considering 

the global mixing-unmixing system Ct = BtA. Its evolution 
under the updating rule (4) is readily obtained by right 
multiplication of (4) by matrix A, immediately yielding 

Ct+l = Ct - XtH(Ctst)Ct (10) 

where we used yt = Btxt = BtAst = Ctst. Hence, the global 
system Ct also undergoes serial updating (compare with (4)), 
which is an obvious fact in light of Fig. 2. This is a trivial but 
remarkable result because it means that under serial updating, 
the evolution of the global system is independent of the mixing 
matrix A in the sense described below. The reader will notice 
that the argument parallels the one used in previous section 
regarding batch algorithms. 

Assume the algorithm is initialized with some matrix BO so 
that the global system has initial value CO = BOA. By (lo), 
the subsequent trajectory {Ct I t > l} of the global system 
will be identical to the trajectory that would be observed for 
another mixing matrix A’ if it is initialized with BA such that 
BOA = BAA‘. This is pretty obvious since in both cases, 
the global system starts from the same initial condition and 
evolves according to (lo), which involves only the source 
signals and Ct. Hence, with respect to the global system Ct, 
changing the mixing matrix A is tantamount to changing the 
initial value Bo of the separator. 

The key point here is that since the issue is the separation of 
the source signals, the performance of a separating algorithm 
is completely characterized by the global system Ct and not by 
the individual values of Bt and A; this is because the amplitude 
of the j th source signal in the estimate of the ith source signal 
at time t is determined only by the (i,g)th entry of Ct. 

It follows that it is only necessary to study the convergence 
of Ct to a quasiidentity matrix under the stochastic rule (10) to 
completely characterize a serial source separation algorithm. 

In summary, serial updating is the only device needed 
to transfer the uniform performance of equivariant batch 
algorithms to an adaptive algorithm. 

C. The Relative Gradient 
A serial algorithm is determined by the choice of a specific 

function H ( . ) .  To obtain such a function, the notion of ‘relative 
gradient’ is instrumental. In this section, we denote (. 1 .) to 
be the Euclidean scalar product of matrices 

( M  I N )  = Trace[MTN] ( M  I M )  = l/Mll&o. (11) 

Let $(a) be an objective function of the n x m matrix B 
differentiable with respect to the entries of B. The gradient 
of 4 at point B is denoted g(B); it is the n x m matrix, 
depending on B,  whose ( i , j ) th  entry is z. The first-order 
expansion of 4 at B then reads 

In order to be consistent with the perturbation of B induced by 
the serial updating rule (4), we define the relative gradient of 

4 at B as the n x n matrix, which is denoted V 4 ( B ) ,  such that 

$(B + EB) = 4(B) + (V#)(B) I E )  + o(E) .  (13) 

There is no profound difference between usual (‘absolute’) 
and relative gradient since comparing (12) and (13) shows that 
Vq5(B) = g(B) BT. However, the relative gradient is con- 
sistent with the notion of serial update, and its appropriateness 
is confirmed in the following. 

The relevance of considering the relative gradient is first 
illustrated in the case where $(a) is in the form 4(B) = 
Ef(y) = Ef(Bx) as in (6). If function f is differentiable 
everywhere, one has 

f ( Y  + SY) = f ( Y )  + f / (Y)TSY + 4 S Y )  (14) 

where f/(y) is the gradient of f at y, i.e., it is the column 
vector whose ith component is the partial derivative of f (y)  
with respect to y p .  We then have 

$(B + EB) = E f ( ( B  + EB)x) = Ef(y + Ey) 
= E f ( y )  + Ef’(y)TEy + o ( E )  
= 4(B) + ETrace{yf’(y)T€} + o(E)  

= 4(B) + (Ef’(Y)YT I E )  + ( ) (E) .  (15) 

Identifying the last expression with (13) yields the result 

V $ ( B )  = VEf(y) = VEf(Bx) = E[f’(y)yT]. (16) 

The point is that the relative gradient at point B depends only 
on the distribution of y = Bx and not on B itself. This was 
to be expected since modifying B into B + EB amounts to 
modifying y into y + Ey, regardless of the particular values 
of x or B. 

As any gradient rule, the ‘relative gradient rule’ is to align 
the ‘relative variation’ E in a direction opposite to the relative 
gradient. In other words, it consists of modifying B into 
B + EB with E = -XV4(B) and X a positive scalar. Indeed, 
by (11) and (13), 

$(B - XV4qB)B) 
= $(B)  + (V$(B)  I -XV4(B)) + o(XV$(B)) (17) 
= 4(B) - ~llV@)II&O + 4 X )  (18) 

so that, for small enough positive A, as long as V $ ( B )  # 0, the 
objective 4 is decreased if B is modified into B - XV4(B)B. 
This relative gradient rule is turned into a stochastic relative 
gradient rule by deleting the expectation operator in the 
relative gradient VEf(Bx) = E[f’(y)yT]. This is then 

Bt+l = Bt - M(Yt)YtTBt (19) 

for the stochastic minimization of Ef(y), where At is a 
sequence of positive scalars. The key point here is that 
(19) precisely is a serial update algorithm: Rules (19) and 
(4) are identical if we set H ( y )  = f’(y)yT. Hence, for 
simple objective functions in the form $(a) = Ef(y),  the 
notion of (stochastic) relative gradient does yield the H ( . )  
function, which defines a serial update algorithm. Note that 
the stochastic optimization of the same objective function 
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Fig. 3. Two-stage separation in batch processing. 
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Fig. 4. Sample run. Convergence to 0 or 1 of the moduli of the coefficients 
of the global system &A. Fixed step size: X = 0.03. Two QAM16 sources, 
cubic nonlinearities: g,(y) = 1yz12y2. 

by a standard (nonrelative) gradient algorithm leads to the 
algorithm 

Bt+l = Bt - Xtf’(yt)x?- 

which is similar to (19) but does not enjoy uniform perfor- 
mance properties. The next section shows how the above 
results extend to find H ( . )  function solving orthogonally 
constrained optimization problems. 

Iv.  SERIAL UPDATES FOR ORTHOGONAL CONTRASTS 

The contrast function $4 defined in (6) is in the form 
44  = Ef(y) but must be optimized under the decorrelation 
constraint R, = EyyT = I. Batch procedures for optimizing 
contrast functions under this constraint have been described in 
[15], [13], and [27]; they are based on factoring the separating 
matrix as B = UW, where W an n x m whitening matrix, 
and U is an n x n orthogonal matrix: There is an intermediate 
vector zt = Wxt, and the estimated source signal vector is 
yt = Uzt (see Fig. 3). By definition, W is a whitening matrix 
if its output is spatially white i.e., 

(20) 
def I = R, = E[z,z:] = WR,WT. 

The constraint R, = I is then satisfied if, and only if, U is 
orthogonal. Thus, after whitening of x into z, the problem 
of minimizing a contrast function Ef(y) = Ef(Bx) over 
B under the constraint R, = I becomes that of minimizing 
Ef(y) = E f ( U z )  over U under the constraint that U is 
orthogonal. 

3021 

Iteration number 

Fig. 5. Sample run. Convergence to 0 or 1 of the moduli of the coefficients 
of the global system &A. Three QAMl6 sources. Decreasing step size: 
At = 2 / t .  

How this program is completed in the adaptive context with 
serial updates is now described: Serial updates of a whitening 
matrix W and of an orthogonal matrix U are first obtained 
and then combined into a unique serial updating rule for a 
separating matrix B. 

A. Serial Update of a Whitening Matrix 
It is desired to adapt a matrix W such that it converges to 

a point where R, = I .  This may be obtained by minimizing 
a ‘distance’ between R, and I .  The Kullback-Leibler diver- 
gence [28] between two zero-mean normal distributions with 
covariance matrices equal to R, and I ,  respectively, is 

def 1 K(R,) = -(Trace(R,) - logdet(R,) -- n). (21) 

The key property of this divergence measure is that K(R,) 2 
0 with equality if and only if R, = I .  This may be proved by 
denoting p1, . . . , pn which are the eigenvalues of R,. Then, 

that K(R,) = 2-1 Cz=l,n $(pz), where $(,U) = p-1-logp. 
This function is nonnegative because p - 1 2 logp for any 
positive p with equality only for p = 1. Hence, K(R,) 2 0 

pn = 1, in which case, R, = I with equality i.f.f. p1 = . . . = 
QED. 

Thus, a whitening matrix is such that K(R,) = 0; hence, 
it is a minimizer of 

2 

Trace(&) = C%=l,n pt and logdet(R,) = Ct=zl,n log p ,  so 

$2(W) c!2f K(WR,WT). (22) 

The relative gradient of 4 2  is (see Appendix A) 

V$z = R, - I = E[z~z: - I]. 

Wt+l = wt - A t  [ztz? - I] Wt. 

(23) 

A serial whitening algorithm is obtained, exactly as in (19), as 

(24) 

by deleting in the relative gradient descent the expectation 
operator in Vdz. Interestingly enough, rule (24) can be shown 
to correspond to the first order (in A) approximation of 
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Potter formula [29] for the recursive computation of the 
inverse square root of a covariance matrix estimated with an 
exponential window. In this instance, the serial approach is 
seen to correspond to an ‘optimal’ solution. 

B. Serial Update of an Orthogonal Matrix 
It is desired to adapt an orthogonal matrix U such that the 

contrast function (6) is minimized. However, the optimization 
is with respect to an orthogonal matrix U. We have seen that 
unconstrained minimization of such an objective leads to the 
updating rule (19). Of course, such a rule would not preserve 
the orthogonality of U, thus violating the orthogonality con- 
straint. Note that if matrix U is orthogonal, i.e., UUT = I and 
is modified into U + &U, then 

(U + &U)(U + EU)T = I + E + ET + €ET (25) 

so that the orthogonality constraint is met at first order (in the 
sense that (U+EU)(U+&U)T  = Z+o(&)) only if ET = - E ,  
i.e., if E is skew symmetric. Thus, the steepest direction 
preserving the orthogonality of U is obtained by projecting 
the gradient onto the space of skew-symmetric matrices. 

The orthogonal projection of Vq54 onto the skew-symmetric 
matrix set is (V44 - V4:)/2. We are thus led to consider the 
serial update obtained by skew symmetrizing the rule (19) into 

Ut+l 1 Ut - At [f’(yt)yT - y t f ’ ( ~ t ) ~ ]  Ut. (26) 

Such an updating rule does not preserve orthogonality exactly, 
but only at first order in A. The next section shows that 
this problem disappears when the whitening stage and the 
orthogonal stage are considered altogether. 

Note that orthogonality could also be preserved by some 
parameterization of the orthogonal matrices (as product of 
Givens rotations for instance), but this solution cannot be 
considered here because it would result in the spoilage of the 
uniform performance property and because we ultimately want 
to get rid of the factorization of B into two distinct matrices 
W and U .  

C. The One-Stage Solution 
A global updating rule for matrix B = U W  is obtained by 

computing Bt+l = Ut+l Wt+l, where Wt is updated according 
to (24), and U, is updated according to (26).2 This is 

Bt+l = Ut+lWt+l 
= (ut - A t  [f’(Yt)YT - Ytf/(Yt)T]  ut) 

x (wt - A t  [.d - I] wt) 
= (I - At [f’(Yt)Y,T - Ytf’ (Yt)T])Ut  

x ( I - A t [ 2 , Z ~ - I ] ) W ,  

= (I - At [f’(Yt)Y,T - Ytf’(YtIT])  
x (1 - At [YtYT - I])Utl“t 

- ( I  - At [f’(Yt)Y? - Ytf’(Yt)T 
+ YtYT - I + O(A,2)])Bt 

- 

(27) 
’Note that there is no reason for considering different step sizes X in these 

two rules (24) and (26) since a ratio different from I could be integrated in 
f Optimal scaling of the nonlinear function f is determined in Section VI-C 

where we have used the identity Ut(I  - At[ztzT - I]) = 
(I - At[y,yT - I])Ut, which stems from UFUt = I and 
yt = Utzt. Discarding the term of order A i ,  we finally obtain 

Bt+l = Bt - & H 4 ( Y t ) B t  

H 4 ( Y )  = YYT - I + f’(Y)YT - Yf’(YIT. 

(28) 

where function H4(.)  appears to be 

(29) 

Hence, we do arrive at an algorithm for updating a separating 
matrix B in the serial form. This completes the program of 
this section. 

V. A FAMILY OF EQUIVARIANT ADAPTIVE ALGORITHMS 
In the previous section, the notion of relative gradient 

applied to a fourth-order contrast function (6) provided us 
with a specific form (29) of function N(.). The source sep- 
aration algorithms defined in this section and studied below 
improve on (29) by modifying it in two respects: Arbitrary 
nonlinear functions are considered for increased flexibility, and 
stabilization factors are introduced. 

A. The EASI Algorithms 
A stationary point for a serial updating algorithm is any 

matrix B such that EH(y) = 0. For the serial algorithm 
derived in the previous section, i.e., for H ( . )  = H 4 ( . )  given 
by (29), this equation can be decomposed into symmetric and 
skew-symmetric parts, namely, 

EIYYTl = I (30) 
E[f’(y)yT - y f / ( ~ ) ~ ]  = 0. (3 1) 

Condition (30) means that the output y is spatially white; 
it matches the normalization convention ( 5 ) .  This condition 
ensures second-order independence (i.e., decorrelation) of the 
separated signals. It is clearly verified in particular if y = Bx, 
and B is a separating matrix. However, it is not sufficient for 
determining a separating matrix since if the output y is further 
rotated by some orthogonal matrix, the condition R, = I is 
preserved, but source separation is no longer achieved. Hence, 
something other than second-order conditions axe required; 
these are provided by the skew-symmetric condition (31). If 
the components of y are mutually independent, then, for i # j ,  
one has E[y,fi(y,)] = Ey, Efi(y,) = 0, where the first 
equality is by the independence assumption and the second 
equality by the zero mean assumption: Ey, = 0. It follows 
that the off-diagonal entries of matrix E [ ~ f ’ ( y ) ~ ]  are zero, and 
consequently, condition (31) is satisfied if B is a separating 
matrix. 

We just proved that EH4(y) = 0 whenever B is a 
separating matrix. In doing so, function f’(.) was only assumed 
to operate component wise. Then, for n arbitrary nonlinear 
functions 91 (. . .) , . . . , gn (. . .), let us define 

d Y )  = k7l (Yl) , .  . . ,gn(Yn)lT, (32) 
(33) 

The serial adaptation rule (4) with H (  .) = H g  (.) still has any 
separating matrix as a stationary point since the stationarity 
condition EH,(y) = 0 is proved exactly as above. 

H g ( Y )  = YYT - I + d Y ) Y T  - Y d Y I T .  
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In summary, any component-wise nonlinear function g is 
associated with a corresponding EASI algorithm: 
EASI Algorithms for Adaptive Source Separation 

The remainder of this paper is devoted to analyzing the 
performance of EASI algorithms. In particular, we characterize 
nonlinear functions g1 ( e ) ,  . . . , gn (.) allowing stable separation. 
As usual, stability depends on the distributions of the sources. 

B. Normalized Form of EASI Algorithms 
Whenever fast convergence is required, speed can be in- 

creased by increasing adaptation steps. Large steps may cause 
explosive behavior and make the algorithm more sensitive 
to possible outliers: Some kind of stabilization is necessary. 
However, stabilization should not spoil the uniform perfor- 
mance property. Recall that uniform performance of serial 
updates has been established under quite general conditions, 
but it was implicitly assumed that the separating matrix 
could take any value. Thus, in order to preserve uniform 
performance, stabilization should not involve any constraint on 
the separating matrix itself, like clipping the diagonal entries or 
normalizing the rows. Hence, stabilization must be achieved by 
modifying Hg (.) itself. We consider the following normalized 
form: 
Normalized EASI Algorithms 

which is very similar to the modification of the LMS algorithm 
into the ‘normalized LMS.’ 

The stabilization solution offered by the form (35) is admit- 
tedly ad hoc, and other similar solutions could be considered. 
The mechanism behind it is simple: If BtA is far from the 
identity matrix or if some outlying observation is received, 
then the output y t  is likely to be ‘large’ in the sense that lytl 
and/or lyTg(yt)J can be much greater than A,’. In this case, 
the denominators in (35) prevent the update to take too large 
values. Actually, provided that At < l /n,  the Frobenius norm 
of the term in square bracket in (35) is easily found to be 
upper bounded by 3/At for any value of y. On the contrary, 
llHg(y)ll~ro can be arbitrarily large (for large enough lyl). 

Besides protection against outliers, as discussed above, the 
normalized form of EASI offers the following advantages. 
First, it entails very little extra computation with respect to 
(33), and it does not introduce any additional parameter. 
Second, when the system is close to a stationary point, the 
covariance of y is close to the identity matrix. Thus, for small 
enough A, the normalized version is expected to behave like 
the raw version (see an example in Fig. 6 )  for which a detailed 
performance analysis is available (Section VI). Finally, the 
normalized form has proved very satisfactory in numerous 
numerical experiments. 

C. Discussion 
Nonlinearities, Stability, and Permutations: The choice of 

the nonlinear function g is, of course, crucial to the perfor- 
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Fig. 6.  Vertical axis: 201og,, llCt - IIJF+,. Lower panel: unbalanced non- 
linearity. Convergence rate depends on the starting point. Upper panel: 
balanced nonlinearity. Isotroplc convergence. 

mance of the algorithm. For any choice of g, a separating 
matrix is a stationary point, but the real issue is the stability 
of the separating matrices. A stability condition is established 
below (47) by an asymptotic analysis that also gives some 
clues as to how to choose and scale the nonlinear functions 

This analysis is conducted for Ct being close to the identity 
matrix, but the case where Ct converges to another per- 
mutation matrix reduces to the previous case by permuting 
accordingly the nonlinear functions acting at the output of Bt. 

Uniform Pelformance and the Noise: We have shown 
above that uniform performance rigorously holds if model (1) 
is verified exactly. In particular, one can deal with arbitrarily 
ill-conditioned mixtures. This fact may appear paradoxical 
since the intrinsic hardness of most array processing problems 
usually depends on the conditioning of matrix A.  However, 
this is not true in the specific case of model (l), which 
ignores any additive noise. Note that source separation remains 
statistically challenging even in the noiseless case unlike other 
array processing problems, like source bearing estimation for 
in~tance.~ 

Of course, some noise is always present in practice, and 
uniform performance can only be expected to hold in a more 
restricted sense. Intuition suggests that for high enough SNR, 
source separation performance is essentially uinaffected by 
additive noise and that this ‘high enough’ SNR level actually 
depends on the conditioning of matrix A. This is in agreement 
with preliminary performance analysis results [215]. 

On the Scale Indetermination: Because of the scale inde- 
termination inherent to the source separation problem, some 
parameters have to be arbitrarily fixed. Quite often, this is 
achieved by constraining the separating matrix. For instance, 
its diagonal elements or those of its inverse are fiixed to unity 

31n beanng estimation, matrix A is parametenzed by source locations in 
such a way that the range space of A determines exactly the hearings and 
vice versa. In the noiseless case, this range space coincides cxactly with the 
range of X T  for finite T:  Determnistic identification is thus possible without 
statistical issue. 

91,. . . ,Sn. 
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[2], [3] ,  [9], or the rows of Bt are normalized [ll]. We have 
chosen an alternate solution: Indeterminations are dealt with by 
requiring that the output signals have unit variance rather than 
by constraining the separating matrix. We recall that assuming 
an unconstrained separating matrix was necessary to establish 
the uniform performance property. However, requiring unit 
variance outputs offers another important benefit: Knowing in 
advance the range of the output signals allows the nonlin- 
earities to be properly scaled. Assume for instance that the 
hyperbolic tangent is used at the first output, i.e., gl(y1) = 
tanh(ay1). Here, a is a real parameter that should not be 
chosen too small because this would make the tangent to work 
in its linear domain. However, the choice of a depends on the 
scale of y1, which is known in advance when indeterminations 
are fixed by requiring unit variance output signals. In contrast, 
if indeterminations are fixed by constraining B,  the range of 
y1 may be arbitrarily large or small, depending on the mixing 
matrix A: The operating domain of the nonlinear functions 
becomes unpredictable. 

VI. PERFORMANCE ANALYSIS 
In this section, some quantities governing stability and 

performance are evaluated. Since theoretical results are mainly 
available in the limit of arbitrarily small step size, we use the 
form (33) of function H ( . )  rather than the normalized version 
of (35). 

We informally recall some definitions and results (see [30]) 
about stochastic algorithms in the form 

&+l = Qt - Xtlli(Qt,xt) (36) 

where xt is a stationary sequence of random variables, and At 
is a sequence of positive numbers. A stationary point 0, veri- 
fies E$(O,,x) = 0 and is said to be (locally asymptotically) 
stable if all the eigenvalues of matrix r defined as 

(37) 

have positive real parts. 
When 8, is the unique global attractor, then for large t ,  small 

enough fixed step size At = A, and under rather restrictive 
conditions, the covariance matrix of Qt is approximately given, 
in the i.i.d. case, by the solution of the Lyapunov equation 

(38)  rcov(Qt)  + coV(ot)rT = XP 

where P denotes the covariance matrix of for 0 = 0, 

p def COV(ll(Q*,X)) = E[$(Q*,X).lctT(Q*,X)]. (39) 

Clearly, this result does not apply in full rigor to the source 
separation problem where, due to the permutation indeter- 
mination, there are several basins of attraction. However, in 
practical applications, the step size is chosen to ensure that the 
probability of jumps from one separating matrix to another is 
sufficiently small. The closed form solution of (38) is given 
below and is indeed found to predict with great accuracy 
the residual error o f  source separation observed in numerical 
simulations (see Table I). 

TABLE I 
EFFECT OF NORMALIZATION 

I1 X-11S112 ; QAM4 sources II 

We recall that it is only necessary to study the dynamics 
of the global system Ct as given by (10). The above results 
apply to our algorithm by the identifications Bt i Ct and 
$ J (~ ,x )  4 Hg(Cs)C. It is also necessary to vectorize these 
matrices. The following convention turns out to be convenient: 
An n x n matrix is turned into a n2 x 1 vector by first stacking 
the ( i , j ) th  and (3,z)th entries for each 1 5 z < 3 5 n and 
then appending the diagonal terms of the matrix. For instance, 
matrix C corresponds to vector Q 

0 = [. . . , cz3, c3,, . . ., . . . , c,,, . . . IT (40) -- 
1<2<3<n l<z<n 

and similarly for matrix H,(Cs)C 

A. Stability of the Separating Matrices 
The ‘mean field’ of an adaptive algorithm at point Q is the 

vector E$(Q,x). In our setting, the mean field is denoted 
E ( C )  and is the matrix 

E ( C )  %f E[Hg(Cst )C] .  (41) 

Simple calculations (see Appendix B) reveal that its linear 
approximation in the neighborhood of C, = I is 

EFt,,(I + E )  = 252, + o ( E )  

where the 2 x 2 matrices D and .J2J are 

with the nonlinear moments of the source signals 
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The significant fact in (42) (holding for 1 5 i 5 n) and in 
(43) (holding for 1 5 i < j 5 n) is the pairwise decoupling. 
It means that, with the vectorization (40), matrix I? is block 
diagonal: There are n(n - 1)/2 blocks of size 2 x 2 equal to 
DJzJD-l  for 1 5 i < j 5 n and n ‘blocks’ of size 1 x 1 
with entries equal to 2. Since the eigenvalues of J’J are 2 and 
6, + nJe  we get the following. 

Stability Condition: K, + K+ > 0 for 1 5 i < j 5 n. (47) 

The stability condition for a separating matrix B such that 
B A  is a permutation is similar. Indeed, if the source signal 
s,  is present at the a(i)th output of B, then it undergoes 
the nonlinearity go(,). Hence, the stability of this separating 
B is again subject to (47), provided the moments IF, are 
understood’ as E[g&,)(s,) - s,g,(,) (s,)].  Obviously, when 
identical functions g, are used or when sources with identical 
distributions have to be separated, the stability condition is 
verified for C, being any permutation if it is verified for 
C, = I .  The case where C, is a permutation matrix with some 
1’s changed to -1, i.e., when C, is any quasiidentity, leads 
again to the same condition when the g,’s are odd functions 
because the moments K,  are then invariant under a change of 
sign. 

The nonlinear moments K ,  deserve some comments. First 
note that if g, is a cubic distortion g,(s,) = ss, then K ,  = 
3 - EIs,I4 since EIs,I2 = 1. This is simply the opposite of 
the fourth-order cumulant (or kurtosis) of s,. The stability 
condition for cubic nonlinearities then is that the sum of 
the kurtosis of any two sources must be negative. Note that 
condition (47) actually is weaker than the requirement that 
all source signals have a negative kurtosis. In particular, 
stability condition (47) is verified if one source is Gaussian 
(in which case, its kurtosis is zero) and the other sources have 
negative kurtosis. In addtion, note that, integrating by parts 
the definition of K,, it is easily seen that K, = 0 if s, is a 
Gaussian variable, independently of the nonlinear function g,. 
This shows that stability condition (47) can never be met if 
there is more than one Gaussian source signal. Finally, if g, is 
a linear function, then K, = 0: It is seen that all the functions g1 
except, possibly, one must be nonlinear to make a separating 
matrix stable. 

B. Asymptotic Covariance and Rejection Rates 

source signal (the ith output of C) is 
When the global system is C = I + E ,  the ith estimated 

8, =y, = [ ( I + E ) s ] ,  = ( l + E , , ) s , + ~ E z J s J .  (48) 
3 #Z  

which correspond to intersymbol interference (ISI) in the 
terminology of channel equalization. 

If Ct is ‘vectorized’ in a n2-dimensional parameter vector 
0 as in (40), these quantities are the diagonal elements of 
matrix Cov(0). Thanks to the regular structure of the EASI 
algorithms, the Lyapunov equation (38) can be solved in close 
form for Co.(@) for arbitrary n, g(.) and signal distributions. 

This general expression of ISIZj is given in Appendix C in 
(83). For the sake of simplicity, this section only discusses 
the case of signals with identical distributions and of a single 
nonlinearity Si(.) = g( . )  for 1 5 i 5 n. There is then only 
one extra moment to consider 

(50) y ef Eg2(s)Es2 - E2[g(s)s] 

where s is any of the sz7s. The rejection rates are (necessarily) 
identical. Equation (83) reduces to 

Note that y is positive by the Cauchy-Schwartz inequality, 
and K is positive by the stability condition. Hence, we have 

and this bound is reached when s = &I with equal probabili- 
ties, and g is an odd function because then, y = 0. 

C. Tuning the Nonlinearities 
The analytical results obtained above provide us with guide- 

lines for choosing the nonlinearities in g(.). We do not intend 
to address this issue in full generality and, again, discuss here 
only the simplest case, which is often encountered in practice, 
of sources with identical distributions. There is no reason 
then to use different nonlinearities: We take g2( . )  = g( . )  for 
1 5 i I: n, implying K, = K and y, = y for 1 5 2‘ 5 n. These 
equalities are assumed throughout this section. 

Local Convergence: The mean field H(C)  has a very sim- 
ple local structure when C is close to any quasiidentity 
attractor C*: Equations (42) and (43) combine into 

€ + I T  € - I T  
H(C, + E )  = 2- + 2K- + o(E)  (53) 2 2 

showing that symmetric and skew-symmetric deviations of Ct 
from C, are pulled back with a mean strength proportional 
to 2 and to ZK,  respectively. When K is known in advance or 
can be (even roughly) estimated, expression (53) suggests that 
we normalize the nonlinearity g(.)  into j(.) = g ( . ) / K  because 
then the nonlinear moment k associated with ij is k = 1. 
With such a choice, the mean field in the neighborhood of an 
attractor becomes 

Since the signals are independent with unit variance and since H(C* + I )  = 2E + o(E) .  (54) 

This is, in our opinion, a strong result because it means that 

a (mean) strength that is independent of the direction of the 
error. This very desirable property of isotropic convergence 
can only be achieved (in general) by resorting to second- 
order adaptive techniques, such as Newton-like algorithms. 

E is of order 6, (48) shows that the ratio of the variance 
of the (undesired) Jth to the variance of the ith signal 

interested in computing pairwise rejection rates, which is 
defined as 

(of interest) is approximately equal to l E Z j l 2 .  Hence, we are any deviation E to a separator is pulled back to zero with 

1SIzJ = EI(Ct - I),J12 15 i , j  5 n (49) 
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-1 3 The resulting minimal rejection rate may be computed to be 

Iteration number 
-13 

Fig 7 Each row corresponds to a sampling time r From top to bottom, 
T = 0,30,60,90,120,150,180 Each column corresponds to one of the 
source signals Each panel shows 200 estimated signal points in the portion 
( - 2 , 2 ]  x ( - 2 2 , 2 2 )  of the complex plane For r = 180, the 'constant modulus 
feature IS approximately reached at both outputs, indicating a successful 
separation 

This benefit is seen to be obtained by our simple (first-order) 
gradient algorithm by simply adjusting the strength of the 
nonlinear function (see an example in Fig. 7). 

Rejection Rates: The nonlinear function g(.) can be chosen 
to minimize the rejection rates under the constraint that its 
amplitude is fixed to ensure isotropic local convergence, 
which, as discussed above, is achieved for IC. = 1. In view 
of (51), the optimal nonlinearity should minimize y subject 
to K = 1. This optimization problem is easily solved by the 
Lagrange multiplier method when the common probability 
distribution of the sources has a differentiable density p ( s )  
with respect to Lebesgue measure. The optimal nonlinearity 
is found to be 

It is interesting to note that the optimal nonlinear functions 
under the decorrelation constraint are proportional to those 
obtained without forcing this constraint (see the M.L. solution 
of [Il l) .  

VII. THE COMPLEX CASE 
At this stage, the processing of complex-valued signals and 

mixtures is obtained straightforwardly from the real case by 
understanding the transposition operator .T as the transpose- 
conjugation operator and understanding 'unitary' in place of 
'orthogonal.' The discussion in Section V-A on the station- 
ary points carries over to the complex case with only one 
restriction: The diagonal terms of the skew-symmetric part of 
EH,(s) are not necessarily zero unless the scalar-to-scalar 
functions gz are restricted to be phase-preserving, i.e., of the 
form 

SZ(Y,) = Yzlz(lY,j2) 15 i 5 72 (57) 

where the l,'s are real-valued functions. In order to easily 
extend the performance analysis to the complex case, it must 
be assumed that the source signals are 'circularly distributed,' 
i.e., we have the following assumption: 

Assumption 5 (Circularity): E [ s , ( ~ ) ~ ]  = 0 ,  1 5 z 5 n. The 
modifications with respect to the real case are then mainly 
cosmetic, and the results are given below without proof. 

Regarding the stability of separating matrices, computations 
are very similar to the real case: It is found that 

where matrices D and J z J  are as in (44), but the nonlinear 
moments are slightly different 

dzf 
6,  - E [ l ~ z 1 " 1 1 ( 1 ~ 2 l 2 )  + ~ z ( l s z 1 2 )  - 1~z12~%(1~z12)l, (59) 

Ez def E[ l sz I2~~( I s2 I2 )  + ~ z ( l ~ z l z )  + I~z12~z(lsz12)1. (60) 

Stability condition (47) is then unchanged provided K~ is 
defined according to (59). For cubic nonlinearities, i.e., for 
I , ( s )  = s, one has K~ = 2 - Els,I4 and -6% again is the 
fourth-order cumulant of s, in the circular case. 

Regarding the asymptotic covariance, it is governed by the 
nonlinear moments 

yz ef E[/sz/2~,2(IS,12)] - [E1~z12~z(1~,/2)12 

pz ef E[lsz12L(ls,12)l (62) 

(61) 

which are the direct complex counterparts of those defined in 
(74). With these definitions, the rejections rates take the very 
same form, either in the i.i.d. case, as given by the simple 
formula (51) or in the general case, as given by the general 
expression (83). 
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VIII. NUMERICAL EXPERIMENTS 
This section illustrates some properties of EASI and inves- 

tigates the accuracy of the theoretical results since these are 
only asymptotics (small A). All the experiments are done in 
the complex case (except in Fig. 7). 

Figs. 4-6 display trajectories of the modulus of the coef- 
ficients of the global system Ct. Hence, an experiment with 
n sources is illustrated by the n2 trajectories of J[CtIzjl as a 
function o f t  for all the pairs 1 5 i , j  5 n. Thus, a successful 
convergence is observed when n of these trajectories converge 
to 1 and n2 - n converge to 0. 

Fast Convergence: Fast convergence is first illustrated by 
Fig. 4 for two i i d .  QAM16 sources using the basic cubic 
nonlinearity gz(y) = (yt(2yz for 1 5 i 5 n. The dashed 
lines represent zt  two standard deviations computed from (5 1) 
and (77). Fig. 5 is similar except that three QAM16 sources 
are involved, and the step size is decreased according to the 
cooling scheme: At = 2/t. 

Effect of Normalization: The effect of normaliztion is in- 
vestigated in Fig. 6. With the same QAM16 input, two serial 
algorithms are run with X = 0.01: one with the normalized 
algorithm (35) and the other with the ‘raw’ algorithm (34). 
Both trajectories are displayed and show little discrepancy 
(see also Table I). 

Isotropic Convergence: Isotropic convergence is illustrated 
by Fig. 7. It displays the evolution of a logarithmic distance 
of Ct to the identity, namely, 201oglo [ICt - IJIF~~, with a 
constant step size. Each curve corresponds to a different initial 
condition. These initial conditions are randomly chosen but are 
at a fixed Frobenius distance from the identity matrix to make 
comparisons easier. Both panels are for cubic nonlinearities 
and uniformly distributed sources (this is the only experiment 
with real signals). Zero-mean uniformly distributed random 
variables have a normalized kurtosis equal to -6/5. We 
have seen that for g(s)  = s3, the moment K is minus the 
kurtosis: K = 615. According to discussion of Section VI-C, 
isotropic convergence is achieved by taking g ( s )  = 5/6 . s3 
so that the corresponding moment is K = 1. The resulting 
trajectories are displayed in the lower panel, where the straight 
dotted line corresponds to a distance varying as exp(-2Xt). 
The upper panel displays trajectories for g ( s )  = 0 . 2 ~ ~ .  
With this factor, the nonlinear moment takes the value K = 
0.2 x 6/5 = 0.24. Thus, according to (53), the symmetric 
and skew-symmetric errors decay, respectively, as exp( -2X t )  
and exp(-2 . 0.24Xt). These two functions are plotted as 
straight dotted lines in the upper panel. Various decay rates 
are observed in the upper panel, depending on the (random) 
proportion of symmetric and skew-symmetric errors in CO. 
They are seen to be upper and lower bounded in accordance 
with theoretical predictions. The lower panel shows decay 
rates that are essentially independent of the initial condition 
CO, evidencing the isotropic convergence obtained by a proper 
scaling of the nonlinear function. 

Rejection Rates: Rejection rates predicted by (5 1) have 
been experimentally measured in the case of n = 2 sources. 
Results are reported in Table I. The following fixed step 
sizes are used: X = 0.1,0.3,0.01,0.003. For each step size, 

’ 

NMC = 500 trajectories are simulated. The initial point is 
CO = I ,  and the sample estimate of IS112 is computed over a 
trajectory in the range 5/A < t < 35/X (the scaling with 1/X 
is adopted to get a constant relative precision). The resulting 
NMC values are further averaged and used to determine an 
experimental standard deviation. The table disp1,ays X-11S112 
and its empirical value plus and minus two standard deviations 
for both the normalized and non-normalized versions. There 
are no results presented for X = 0.1 and QAM16 signals for 
the nonnormalized algorithms because a significant fraction 
of divergent trajectories have been observed. In all the other 
cases, representing 15 x 500 trajectories, no divergence was 
observed. It appears that asymptotic analysis correctly predicts 
the rejection rates for step sizes as large as X = 0.1. Note that 
normalization does not affect much the empirical performance. 

Application to Digital Communications: The performance 
of EASI is illustrated by running the algorithm on data 
generated from a digital communications testbed. The data 
set is the output ‘of an eight-element linear array with a sensor 
spacing of 0.574 wavelength operating at 1.89 GHz. The 
complex baseband signals are digitized at 4.6 MHz, and the 
symbol rate is 1.15 MHz. Because the source signals have 
constant modulus? the quality of separation is evidenced by 
displaying the separator outputs in the complex plane and 
checking that they do sit close to a circle. 

In the following run, EASI is fed with the outputs of sensors 
1 and 5; it is initialized with Bo = 12 and is run with 
a constant step size X = 0.01. Fig. 7 shows t,he evolution 
of the separation. Because the mixing matrix is unknown, 
the evolution of the global system cannot be displayed here. 
To evidence convergence of Bt to a separating, matrix, we 
have to use the data themselves. The following device is 
used: At time T ,  the current value of B, is sampled and is 
applied to a batch of 200 samples {xt I t = 1,200) of the 
array output. The first (resp. second) column shows, in the 
complex plane, the first (resp. second) coordinate of B,xt for 
t = 1, . . . ,200. Each row corresponds to a sampling time 
T .  We use T = 0,30,60,90,120,150,180. That a successful 
separation is achieved is seen by the fact that the points gather 
close to the unit circle. 

Ix. SUMMARY AND CONCLUSION 
A class of equivariant adaptive algorithms for the blind 

separation of n independent sources was introduced. This class 
is defined by the ‘serial updating’ rule (4), and a particular 
serial algorithm in this class is determined by the specification 
of a vector-to-matrix mapping H ( . )  such that matrix EH(y) = 
0 when vector y has independent components. 

The very desirable property of ‘uniform performance’ is 
guaranteed by the simple device of serial updating. For adap- 
tive algorithms, uniform performance means that changing the 
mixing matrix is equivalent to changing the initial condition. 
As a result, the characteristics of a serial algorithm, such as 
the stability conditions, the convergence rates, or the residual 
errors, do not depend on the mixing matrix, making it possible 
to tune and optimize the algorithm once for all mixtures. 

4The GMSK modulation is used in this data set. 
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To obtain uniformly good performance, the (relative) gra- 
dient of an orthogonal contrast functions is computed, and 
the resulting form was then generalized into a family (33) 
of matrix-valued functions H g  (.). A particular matrix H ,  (.) 
depends on a set of n arbitrary scalar functions 91, . . . , gn. 
Performance of the algorithm then depends on an appropriate 
choice of these functions with respect to the distribution of the 
sources. This was investigated via an asymptotic analysis. 

Stability conditions and rejection rates are given in close 
form for arbitrary 91, . . . , gn. A striking result is that functions 
gz can be scaled to obtain isotropic convergence; this Newton- 
like feature is obtained even though our algorithm basically 
is a stochastic gradient algorithm. Optimal nonlinearities, 
optimizing source rejection under the constraint of isotropic 
convergence, were also derived. 

Numerical experiments confirm that the asymptotic analysis 
characterizes the algorithm with a very good accuracy, even 
for relatively large adaptation steps. Finally, a sample run on 
real array data (digital communications signals) was presented 
to illustrate the fast convergence of the algorithm. 

The general theme of this paper is that when matrices are 
to be updated, specific rules may be considered that have no 
equivalent for a generic adaptive system with an unstructured 
vector of parameters. This specificity lies in the multiplicative 
nature of the source separation problem. 

APPENDIX A 
RELATIVE GRADIENT FOR WHITENING 

To compute the relative gradient of $ 2 ,  we recall that 
for a positive matrix R, log det ( R  + SR) = log det (R) + 
Trace{R-lSR} + o(6R) so that the differential of function 
K at a positive R is 

1 
2 K ( R  + E )  = K ( R )  + -Trace{(l- R-l)E} + o(E) .  (63) 

The first-order relative expansion of 4 2  follows 

$2(W + EW) 
= 42( ( . r  + E)W) 
= K ( ( I +  E)WR,WT(I + qT) 
= K ( ( I  + E)R,(I + E)T) 
= K ( R ,  +ER, + R,ET + o(E) )  

= I((&) + -Trace{ ( I  - R;‘) (ER, + &ET)} -t o ( E )  

= K(R,) + pTrace{(R, - I)(€ + E T ) }  + o(&) 

= K(R,) + Trace{(&, - I ) € }  + o(E)  
= I((&) + (R, - I I E )  + o(&). 

1 
2 
1 

Identifying the last expression with definition (13) yields 
expression (23). 

APPENDIX €3 
DERIVATIVE OF THE MEAN FIELD 

We compute the first-order expansion of the mean field 
in the neighborhood of the identity matrix. This amounts to 

findlng the linear term in E in %(I + E ) .  First note that 
definition (41) also reads 

(64) %(I+ E )  = E[H(s + €§ ) ( I  + E)]. 

Since the identity is a stationary point, we have EN(s) = 0 
so that the mean field is also 

%(I + E )  = EN(s + E s )  + o(€). (65) 

The hermitian part of EH(s + Es)  is readily obtained as 

E[(s + E s ) ( s  + - I ]  = E + ET + o(&) (66) 

since our normalization convention is E[ssT] = 1. 
In order to compute the skew-symmetric part of % ( I +  E)  

that is E[g(y)yT - ~ g ( y ) ~ ]  with y = s + Es, we have to 
go down to the component level. We start by evaluating the 
( i , j ) th  entry of E [ ~ g ( y ) ~ ] .  Using y% = s,+C, &,,sa, we get 

‘Yt.9, (Y, 1 = szg, (3.3 + 
a 

b 

There is no need to evaluate the terms for i = j since they 
cancel after skew symmetrization. Focusing on terms with 
z # j ,  we next find that 

Esag,(s,) = S(d ,  a)Es,g,(s,) (68) 
Es,sbgi(s,) = S(z, b)Es:Egi(s,) for i # j (69) 

because the source signals are independent with zero mean. It, 
follows that, for i # j ,  

Expectations (65),  (66), and (70) then combine into 

%,(I + E )  = E%, (1 + Es,2EgXs,) - Es,g,(s,)) 
+ &(1 - E&gi(s,) + Eszg,(s%)) + # ( E )  

(71) 

which, after symmetrization, yields (43). 

APPENDIX C 
ASYMPTOTIC COVARIANCE 

To solve (38), we must first evaluate matrix P. Using source 
independence, it is easily checked that most of the entries 
of H g ( s )  are unconelated. The nonvanishing terms can be 
computed to be 

Cov(Nzz(s)) = Es: - 1 (72) 

with the following definitions 

(73) 
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This is a pleasant finding since it means that P has the same 
block diagonal structure as F, allowing the Lyapunov equation 
(38) to be solved block wise. 

Solving for the 1 x 1 blocks is immediate: Each scalar 
equation yields 

Es; - 1 
COV(Cii) = A- 

4 .  (77) 

The 2 x 2 block Lyapunov equation extracted from (38) for 
a pair i # j is 

where we set 

Left and right multiplication by D-l and DPT, respectively, 
yields 

Matrix J’J being lower triangular, the 2 x 2 Lyapunov equation 
may be solved explicitly. This purely algebraic task needs not 
be reported here. Only the following intermediate result is 
needed If (2 ,  y, t )  is the solution of 

then the northwest entry of D[: ,“IDT is 

Q p ( 2 b -  c ) (2ay  - CQ) 
x + y + 2 t = - + - - +  * (82) 2a 2b 2ab(a + b )  

From this, an explicit expression for Cov(C,,) is readily 
obtained. We skip some additional uninspiring algebraic re- 
organization that yields the form most appropriate for our 
concems 

‘(83) 
where ,B: and ,&; cancel for identical sources and nonlinear- 
ities. They are, respectively, symmetric and skew-symmetric 
in the exchange i H j 

(84) 
+ *f 2(6% + Kj)(CL% - p3)2 + (6% - 6 j ) 2  

4(6, + 6 3 x 2  + 6% + 6 3 )  
P%j - 
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