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Abstract

Many algorithms for independent component analysis (ICA) and blind source separation (BSS) can be considered particular instances

of a criterion based on the sum of two terms: C(Y), which expresses the decorrelation of the components and G(Y), which measures their

non-Gaussianity. Within this framework, the popular FastICA algorithm can be regarded as a technique that keeps C(Y) ¼ 0 by first

enforcing the whiteness of Y. Because of this constraint, the standard version of FastICA employs the sample-fourth moment as G(Y),

instead of the sample-fourth cumulant. Our work analyzes some of the estimation errors introduced by the use of finite date sets in such a

higher-order statistics (HOS) contrast and compares FastICA with an alternative version based on the sample-fourth cumulant, which is

shown for different probability distributions having a lower variance in the generalization error in the case in which no whitening is

performed, e.g. when orthonormal mixing of sources is present.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A recent key discovery in independent component
analysis (ICA) [8] computational technique which finds
hidden factors in data looking for components that are
statistically independent, that the mutual information
criterion and related approaches are particular instances
of the following weighted criterion:

flðY Þ ¼ lCðY Þ � GðY Þ, (1)

where C(Y) is a decorrelation term and G(Y) is a measure
of non-Gaussianity. Typically, G(Y ) can be obtained as a
sum of marginal non-Gaussianities based on higher-order
statistics (HOS) contrast (or objective) functions, i.e.
GðY Þ ¼

P
iGðY iÞ, which leads to successful sequential-

independent component (IC) extraction or sequential
signal separation from a linear mixture [10]. In this
context, and for large values of l, FastICA [15], one of
the most widely employed ICA procedures (see e.g.
[2,4,13,21,27] for recent applications of FastICA) mainly
due—as its authors claim (p. 179 [17])—to its reliability and
e front matter r 2007 Elsevier B.V. All rights reserved.

ucom.2006.09.015

ess: sbermejo@eel.upc.edu.
very fast convergence, can be understood as a method that
enforces C(Y) ¼ 0 by means of a whitening process and
then extracts ICs with the sample-fourth moment contrast
as G(Y). Such orthogonal procedure which is based on a
pre-whitening stage has an inherent lower bound in the
asymptotic—i.e. when the number of samples (N) tends to
infinite—separating performance, due to the errors intro-
duced in the computation of the whitening matrix that
cannot be compensated later, as [6,7] pointed out. These
phenomena lead to the use of non-orthogonal methods in
which C(Y) and G(Y) are simultaneously optimized in
order to solving the problem of distorting the optimization
criterion introduced by whitening (e.g. [28]). In the case of
FastICA, such a distortion is that the learning algorithm is
enforced to optimize the sample-fourth moment contrast
instead of the sample-fourth cumulant.
Our work studies the consequence of such a distortion

when a finite set of observed signals DN ¼ {xi, i ¼ 1,y,N}
is available in terms of some straightforward distribution-
dependent bounds on the generation error in the context of
the statistical learning theory (SLT) [24–26], extending
some previous results [1] and applying them to FastICA
algorithm. Since the formulation of this algorithm given in
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[15,16] and some other works (e.g. [12]) only studied its
properties in terms of convergence and the separation of
source signals assuming an infinite number of samples,
much remains unknown regarding its real convergence and
accuracy, topics which are here addressed. In particular, it
is shown that the generalization error of an alternative
fixed-point algorithm based only on optimizing the sample-
fourth cumulant when orthonormal mixing of sources is
present has a lower variance for some distributions, when
finite data sets are dealt with, in comparison to the
standard version of FastICA that is based on whitening
and the sample-fourth moment contrast. These distribu-
tion-dependent theoretical results are confirmed in an
empirical study, which consists of the orthonormal
separation of uniform and Laplacian sources with both
versions of FastICA, and demonstrate a better estimation
of the separating matrix for the algorithm based on the
fourth cumulant. A direct consequence of this work is that
a fixed-point optimization of contrast functions of the form
shown in (1), in which a term C(Y) was employed
effectively to ensure decorrelation plus a term G(Y) based
on the fourth cumulant, may incur smaller generalization
errors than the two-step approach of standard FastICA, in
which the whiteness of Y is first imposed and then the
constrast function that is to be the sample-fourth moment
is restricted later.

2. FastICA REVISITED

2.1. The FastICA algorithm

In a linear BSS model [24], we observe m signals x1,y,
xm that correspond to a linear mixture of a p source signal
s1,y, sp, i.e.

x ¼ As, (2)

where A is known as the mxp ‘‘mixing matrix’’. According
to (2) and given the observable vector x, a linear projection
is performed as

y ¼ wTx, (3)

where, clearly, w must tend towards one of the column
vectors of A�1 in order to obtain one of the p source signals
si with iA{1,y, p}. If there is a minimum of (p�1) non-
Gaussian sources and A is forced to be orthonormal by a
previously performed whitening process, the so-called fixed-
point (or fast) ICA algorithm recovers one of the original
signals. The algorithm has the following steps [10,17]:
1.
 Initialize randomly w[0] of norm 1. Let k ¼ 1.

2.
 Update w½k� ¼ Êfxðw½k � 1�TxÞ3g � 3w½k � 1�.

3.
 Divide w[k] by its norm.

4.
 If jw½k�Tw½k � 1�j is not close to 1, k ¼ k +1 and return

to step 2. Otherwise, finish with w* ¼ w [k ].

As the authors pointed out in [10,17] , the estimator of
the expectation Ê must employ a large sample set
DN ¼ {xr, i ¼ 1,y,N} (they postulate 1000 samples).
Hence, a batch version of the updated equation typically
has the following form:

w½k� ¼ Êfxðw½k � 1�TxÞ3g � 3w½k � 1�

¼
1

N

XN

i¼1

xiðw½k � 1�TxiÞ
3
� 3w½k � 1�. ð4Þ

2.2. The FastICA objective function

Hyvärinen and Oja [16] proposes an optimal objective
function suitable for separating one source signal accord-
ing to the above constraints in A. The source distributions
have the following general form:

ĴðwÞ ¼ aÊfðwTxÞ4g þ bF ½ÊfðwTxÞ2g�, (5)

where a, b40 are arbitrary scales and F is a suitable
penalty function. In particular, (4) is reduced to the fourth
cumulant if a ¼ b ¼ 1. Then, F[u] ¼ �3u, whose minimiza-
tion results in the signal separation of at least one of the
available (p�1) platykurtic source signals si, as shown in
[11,15,16]. If we keep in mind that the normalized update
equation of the fixed-point algorithm is given by (p.188;
[10]), then

w½k� ¼
rwĴðw½k � 1�Þ

jjrwĴðw½k � 1�Þjj
, (6)

where Ĵ is the sample objective function created using DN .
Since in practice a whitening process is performed that
enforces ÊfðwTxÞ2g ¼ 1, the sample objective function,
then what actually minimizes FastICA with the update
equation given in (4) is

ĴFastICAðw;DNÞ ¼ ĴFastICAðy;DNÞ

¼
1

4N

XN

i¼1

ðwTxiÞ
4
� 3
jjwjj2

2
. ð7Þ

Eq. (7) has two terms: the first one is the sample-fourth
moment, scaled by a factor of 4; and the second one is a
sum of squares of the components of the separating vector,
which is the simplest form of a regularizer, a technique for
implementing regularization known as weight decay (see
y9.2 in [3]). Clearly, the minimization of (7) cannot be
similar to that performed with the fourth cumulant, since
whitening always ensures that ÊfðwTxÞ2g ¼ 1 for all
NoN. The use of fourth moment as a contrast function
dates from the late 1980s: it was first introduced for a
phase-correction estimation problem [18] (as denoted
in [23]), later for blind deconvolution [20] and, subse-
quently, for blind source separation [5,9]. Differences
among all these approaches including FastICA mainly
relies in the application field and the optimization
procedure that comes from gradient descent [20], relative
gradient [9] to the Newton-like optimization procedure of
FastICA [17,19].
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3. An alternative version of FastICA

3.1. Reformulating the objective function for FastICA

As Section 5.2.4 [15,16] observes, FastICA is derived
from an optimal cost function based on the fourth
cumulant

JFastICA½w� ¼
1

4
fo
k4½w� ¼

1

4
fo
k4½y� ¼

1

4
½m4ðyÞ � 3m2ðyÞ

2
�

subject to the constraint jjwjj2 ¼ 1, ð8Þ

where {mr, r ¼ 2,4} are the moments about the mean
defined by

mr ¼ Efðy� E½y�Þrg, (9)

where the gradient of (8) needed for the update rule is

rwJFastICAðwÞ ¼ Efy3xg � 3Efy2gEfyxg. (10)

If we assume the known constraints of orthonormality in
A and the normalization of the source signal to the unit
variance achieved by the whitening process, then the
sample covariance matrix R̂XX and Êfy2g yields

R̂XX ¼ ÊfxxT g ¼ I , (11)

Êfy2g ¼ 1. (12)

Consequently, the estimation of (10) can be simplified to
the final form employed in the FastICA algorithm,

rwĴFastICAðwÞ ¼ Êfy3xg � 3w. (13)

However, if no whitening is performed a scaled version
of the sample-fourth cumulant to be optimized can be
employed, i.e.

ĴFastICA2ðw;DNÞ ¼ ĴFastICA2ðy;DN Þ ¼ �
b
4
½m̂4ðyÞ � 3m̂2ðyÞ

2
�,

(14)

where fm̂r; r ¼ 2; 4g are the estimations of the moments
defined by

m̂r ¼
1

N

XN

n¼1

ðwTx½n�Þr (15)

and b is the sign of the kurtosis of the source to be
extracted (+1 for leptokurtic signals and �1 for platykur-
tic signals).
3.2. The FastICA2 algorithm

Now, if (14) is minimized instead of (7), the gradient
needed for the constrained optimization gives the estimator
of (10) computed with DN, i.e.

rwĴFastICA2ðwÞ ¼ �bfÊfy3xg � 3Êfy2gÊfyxgg

¼
�b
N

XN

i¼1

ðwTxiÞ
3xi þ 3b

1

N

XN

i¼1

ðwTxiÞ
2

( )

�
1

N

XN

i¼1

ðwTxiÞxi

( )
. ð16Þ

Therefore, we can express the FastICA2 algorithm as
follows:
1.
 Initialize randomly w[0] of norm 1. Let k ¼ 1.

2.
 Update w½k� ¼ �bÊfxðw½k � 1�TxÞ3g þ 3bÊfðw½k � 1�T

xÞ2g � Êfxðw½k � 1�TxÞg:

3.
 Divide w[k] by its norm

4.
 If jw½k�Tw½k � 1�j is not close to 1, k ¼ k +1 and return

to Step 2. Otherwise, finish with w* ¼ w [k ].

3.3. Estimation errors in the FastICA objective functions

In cases in which the source signals exhibit unit variance
and the mixing matrix is orthonormal, the optimization of
(7) or (14) is equivalent for N-N. However, the
estimation errors introduced for employing a finite set
DN keep this equivalence untrue. The question of how these
optimizations differ in the generalization error can be
analyzed by studying bounds on the rate of uniform
convergence between the sample-based cost functions
ĴHOS½w� and their mathematical expectations
JHOS½w� ¼ EðĴHOS½w�Þ. According to [24], these bounds
have the subsequent form

PfjĴ½w� � J½w�jpwgX1� ZðN; wÞ. (17)

The SLT developed in [24], and later in [25,26], is focused
on deriving distribution-independent bounds, i.e. bounds
based on no constrains about the probability distribution
of the cost function. For example, if it is bounded then the
Hoeffding inequality can be employed in (17). However,
when information about the distribution of Ĵ is available,
distribution-dependent bounds can be obtained. Particu-
larly, the Beinaymé–Chebyshev inequality can be then
employed to make statements in probability (Section 10.8
in [22]) substituting the different variables in (17) as
follows:

J½w� ¼ EðĴ½w�Þ, (18)

w ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðĴ½w�Þ

q
, (19)

ZðN ; wÞ ¼ 1=l2 with l40, (20)

where varðĴ½w�Þ can be computed according to the
distribution of Ĵ½w�. In source separation, Ĵ½w� ¼ Ĵ½y� (for
a given value of w) corresponds to a particular probability
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Fig. 1. Variances of the cost functions of FastICA and FastICA2 for

those projections which induce a generalized Gaussian distributions in y,

with m1 ¼ 0 and m2 ¼ 1 for different values of the shape parameter n.
(Note: Crosses X denote those points of the curve estimated while circles O

are the theoretical values computed for Laplacian and normal distribu-

tions. Also the asymptotes N varðk̂4 uniformÞ and N varðm̂4 uniformÞ are

computed analytically.)
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distribution when the distributions of source signals are
known. This fact is especially clear for projections that
recover one of the source signals. Additionally, in problems
with a great number of sources, the distribution of y in
points where sources are maximum mixed (e.g. y ¼ y ¼

ð1=
ffiffiffi
2
p
Þðs1 þ s2Þ for sources s1 and s2 mixed with an

orthonormal matrix), which typically corresponds to those
points of Ĵ½w� is maximum, will tend towards normality
due to the central limit theorem given certain conditions. In
all these cases, a simple computation of variances is feasible
following Section 10.5 [22], since the variance of a function
g(t1, t2,ytk) (abbreviated here as g(t)), with statistics ti

computed from N samples that have mean yi and variances
of the order N�r (r40), is given by

varfgðtÞg ¼
Xk

i¼1

fg0iðhÞg
2varðtiÞ

þ
Xk

iaj

Xk

j¼1

fg0iðhÞgfg
0
jðhÞg

2covðti; tjÞ þOðN�rÞ, ð21Þ

where g0iðhÞ denotes qgðtÞ=qti evaluated at y1, y2,y, yk. The
analysis of variances in (21) is done with a precision of
OðN�rÞ and consequently mean and variances of statistics
are also assumed to be of OðN�rÞ with r typically equal to
1. Following [22] , the sample HOS contrasts based on
sample moments m̂r gives a mean Eðm̂rÞ ¼ mr þOðN�1Þ,
which practically converges to the expected value to the
order of N�1. Consequently, in the subsequent analysis
results are correct up to O(N�1 ). If t1 ¼ m̂4, t2 ¼ m̂2 and
gðt1; t2Þ ¼ �4ĴFastICA2=b ¼ t1 � 3t22, we achieve

varð�4ĴFastICA2=bÞ ¼ varðk̂4Þ ¼ varðm̂4Þ þ 36m2
2varðm̂2Þ

� 12m2covðm̂4; m̂2Þ, ð22Þ

where mi denote the i th-order moment, m̂i is the sample i

th-order moment and k̂4 is the sample-fourth cumulant.
Similarly, we find

varð�4ĴFastICA=bÞ ¼ varðm̂4Þ, (23)

where variances of sample moments for populations
around zero are given by ([22], p. 347)

varðm̂rÞ ¼
1

N
ðm2r �m2

r Þ, (24)

covðm̂q; m̂rÞ ¼
1

N
ðmqþr �mqmrÞ. (25)

Substituting (25) and (26) in (23) and (24) yields

varð�4ĴFastICA2=bÞ ¼
1

N
fm8 �m2

4 þ 36m2
2ðm4 �m2

2Þ

� 12m2ðm6 �m4m2Þg, ð26Þ

varð�4ĴFastICA=bÞ ¼
1

N
ðm8 �m2

4Þ. (27)
As shown in (27) and (28), the variance of both sample-
based cost functions depends differently upon higher
moments of even orders of magnitude (2, 4, 6 and 8), so
their distribution-dependent probability inequalities ob-
tained substituting (18)–(20) in (17) are not the same. In
this way, their optimization will lead to different solutions.
The question now is which one will have a better accuracy
or, more precisely, which one will lead to a learning
algorithm that computes a solution closer to the optimal
one, a column vector of A�1. An indirect answer could be
provided by first analyzing which sample-based cost
function has a lower variance and hence bears a greater
resemblance to the optimal counterpart and thus it fulfils
with greater probability (17). According to [1] , where the
variance of several HOS contrast was computed for several
distributions, varð�4ĴFastICA2=bÞ is 9:882=N, 24=N and
1656=N, and varð�4ĴFastICA=bÞ is 5:76=N, 96=N and
2484=N for uniform, normal and Laplacian distributions,
respectively. Here, we extend these previous results study-
ing the zero-mean generalized Gaussian density (p.40, [17])
given by

pyðyÞ ¼ C exp �
jyjn

nEfjyjng

� �
, (28)

where C is a scaling constant that ensures
R

pyðyÞdy ¼ 1
and n40 determines the type of distribution. Impulsive-
type distributions are obtained for 0ono1, n ¼ 1 yields a
Laplacian distribution, n ¼ 2 a normal distribution, and
n!1 the uniform density. Finally, we have sub-Gaussian
densities and super-Gaussian densities for n42 and no2,
respectively. Fig. 1 shows the evolution of N varðk̂4Þ and
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Fig. 2. The estimated parameters C and Efjyjng of a generalized Gaussian

with m1 ¼ 0 and m2 ¼ 1 for different values of the shape parameter n.
(Note: circles O are the theoretical values computed for Laplacian and

normal distributions.)
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N varðm̂4Þ of a generalized Gaussian random variable with
zero mean and m2 ¼ 1 for different values of the shape
parameter n. Theses curves have been estimated through
numerical integration of (22) and (23) with the parameters
C and Efjyjng computed through a recursive algorithm that
involves a simultaneous numerical integration of equationsR

pyðyÞdy ¼ 1 and
R

y2pyðyÞdy ¼ 1 until a satisfactory
solution for these parameters is achieved (see Fig. 2). As
it can be observed, both variances are monotonically
decreasing functions respect to the shape parameter n and
have asymptotes in n!1 which are the variance of
N varðk̂4 uniformÞ and N varðm̂4 uniformÞ.

However, the question of which cost function has a
better accuracy, i.e. a lower estimation error, can be further
analyzed having in mind that SLT is really interested in
studying a more stringent condition than the more general
probability inequality in (17), i.e.

Pfsup
w

jf̂
o
½w� � fo

½w�jpwgX1� ZðN; wÞ, (29)

where sup denotes supremum. The rationale about
analyzing such a worse case is that even large deviation
in one single point may incur in a large deviation in

achieving the minimum of point of f̂
o
respect to w� ¼

arg
w

min fo
½w� during optimization (Section 2.6 in [24]). In

such a worst-case scenario, the solution wj that causes the
greatest variance on the random variable y will limit the
uniform convergence of the sample cost function to its
expected value. According to Fig. 1, if there are many
sources with sub-Gaussian distribution (e.g. uniform), this
limit will characteristically be controlled by the variance of
a normal distribution induced in y for those values of the
separating matrix that causes the maximum mixing. On the
other hand, if we had sources with a super-Gaussian
distribution (e.g. Laplacian) this limit would be established
by the variances on points in which a recovery of one of the
source signals was accomplished. Consequently, the
optimization of ĴFastICA2 seems preferable for these two
cases since it has a lower variance for normal distributions
(the worst case for sub-Gaussian sources) and also for
super-Gaussian sources.
Finally, it is worth noting to draw attention to an

important consequence of studying the above worst-case
setting. If (29) is satisfied then the following inequality is
also fulfiled (Section 2.6 in [24]),

Pffo
½wþ� � fo

½w��p2wgX1� ZðN; wÞ with (30)

w� ¼ arg
w

min fo
½w�, (31)

wþ ¼ arg
w

min f̂
o
½w�. (32)

The inequality (30) bounds the error in the expected cost
function calculated in those points which minimizes the
expected and sample cost functions, and thus it is possible to
bound probabilistically the effect of minimizing the sample
cost function depending on the number of samples N.

4. Experimental results

In this section, experiments in blind source separation of
two and large-scale sources are presented in order to obtain
consistent results according to the distribution-dependent
theory introduced in Section 3. For this purpose, we only
work with artificial data taken from known distribution,
i.e. uniform and Laplacian populations, in order to check if
the rationale suggested in Subsection 3.3 related to these
distributions is supported empirically. The bounds (17),
(29) and (30) are probabilistic, i.e. they are fulfiled with a
given probability, and does not take into account the
particular optimization procedure whose good convergence
can only be guaranteed for N-N [12] and, consequently,
it can introduce optimization errors in the computed
solution. For these reasons, we do not try to estimate
directly these bounds but to confirm them quantitatively
through the comparison between the separating vector and
matrix computed during learning and the mixing matrix.

4.1. Orthonormal mixing of two uniform and Laplacian

sources

We relate, in this subsection, how FastICA2 (Section
3.2) was tested against a modified version of FastICA
(Section 2.1) called FastICA1, which includes the term �
b for detecting the sign of kurtosis of the source signals to
be extracted. We employed a linear BSS model in which
two source signals s1[n] and s2[n] with uniform and
Laplacian normalized distributions, i.e. Ks ¼ I, are mixed



ARTICLE IN PRESS

0.9

1

N

m
e
a
n
 (

P
I)

0.98

0.96

0.94

0.92

0.88

0.86

0.84
101 102 103 104

FastICA1

FastICA2)

Fig. 3. Mean PI for Laplacian sources.

1

2

3

4

5

6

7

8

9

10

N

m
e

a
n

 (
C

I)

FastICA1

FastICA2

102 103 104

Fig. 4. Mean CI for Laplacian sources.

S. Bermejo / Neurocomputing 71 (2007) 392–399 397
through the orthonormal matrix A given by

A ¼ a1 a2
� �

¼
cos a sen a

sen a � cos a

" #

¼
cosðp=4Þ senðp=4Þ

senðp=4Þ � cosðp=4Þ

" #
¼

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

�1=
ffiffiffi
2
p

2
4

3
5. ð33Þ

For uniform sources, a triangular distribution is
originated when there is maximum mixing instead of
normal mixing. This distribution causes a variance in
�4ĴFastICA2=b and �4ĴFastICA

�
b of 9.67/N and 23.04/N,

respectively. Experiments were performed on 1000 different
data sets DN of the same size with N ¼ 5, 10, 25, 50, 75,
100, 150, 200, 250, 500, 1000, 2500, 5000, 10000 and 25000.
The initial separating projection w ¼ [cos y sen y]T was
chosen randomly within the uniform interval y ¼ [�p, p ],
and the stopping condition was settled at
jw½k�Tw½k � 1�j ¼ 1. Figs. 3–6 display the mean and
variance estimated for the 1000 sets for each N of a
performance index (PI) and a convergence index (CI)
defined as

PI ¼ max jw�Ta1j; jw
�Ta2j

� 	
¼ max j cosða� yÞj; senða� yÞ



 

� 	
, ð34Þ

CI ¼ ðmin
w

JFastICAðwÞÞ=ĴFastICAiðw
�Þ; i ¼ 1; 2. (35)

Since PI is the absolute value of a scalar product of two
one-norm vectors, it is ranged between [0,1] and measures
the similarity between the separating vector achieved by the
learning algorithm and the nearest-column vector of the
mixing matrix A. As observed from (34), it is also a
function of the angle error j ¼ a� y. The convergence
index CI measures the divergence between the minimum in
the expected cost function and the minimum of the sample
cost function obtained during learning. As both minimums
come close, CI will tend to unity. Consequently, when the
learning algorithms converge to one of column vectors of A
and the solutions achieved by minimizing the expected and
sample cost functions are the same, PI and CI tend to
unity.

As Figs. 3 and 5 show, FastICA2 visibly outperforms
FastICA1 for both separation problems, achieving for
almost all the sample sizes N a greater mean (PI) than
FastICA1, and thus computing a separating vector closer
to one of the column vectors of A. This behavior can be
explained in terms of the differences of both algorithms in
the evolution of the convergence index CI. For uniform
sources, PI of both algorithms are monotonically increas-
ing functions as N augments (Fig. 5) and, accordingly, it
suggests that the minimums achieved are increasingly
closer to the optimal ones. Accordingly, CIs are mono-
tonically decreasing functions (Fig. 6) but, as it can be
observed, CIFastICA2 has a greater slope and converges
sooner to the unity. In the case of separating Laplacian
sources, PIFastICA2 (Fig. 3) has a similar evolution than
before and its CI (Fig. 4) for N475 is also again a
monotonically decreasing function. Also Fig. 4 shows the
unstable evolution of CIFastICA1 that justifies the poor
performance of FastICA1 for separating two Laplacian
sources, even for large data sets (Fig. 3).
4.2. Orthonormal mixing of large-scale uniform sources

A second set of experiments was carried out to compare
the performance of optimizing the sample-fourth cumulant
contrast with the sample-fourth moment in a large-scale
separation problem with uniform sources. For this
purpose: (1) the symmetrical implementation of FastICA2
was employed following the symmetrical version included
in the FastICA package [14], since, as shown in Oja, this
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Fig. 6. Mean CI for uniform sources.

Table 1

Mean and variance PI of different versions of symmetrical FastICA for large-

(N) and number of sources (p)

N p No whitening

FastICA2

400 4 2.3� 10�3/1.1� 10�2*

1000 8 1.7� 10�3/5� 10�4

2000 10 1.1� 10�3/2� 10�4

2500 20 1.9� 10�3/2� 10�4

6000 40 1.6� 10�3/1� 10�4

8000 50 1.5� 10�3/1� 10�4

[*mean/variance].
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version shares the good convergence properties of the one-
unit case and, as we observed in a previous set of
experiments, all these algorithms achieve better generation
results than those based on the deflation approach, (2) the
optimization of the sample-fourth moment was ensured
enforcing a pre-whitening in the standard FastICA
algorithm supplied in [14].
The symmetrical FastICA2 was tested against the

following symmetrical FastICA algorithms based on two
non-linearities: (1) third power and (2) tanh. (The skew and
gauss non-linearities were discarded since they behave very
similar than tanh.) The experiments were performed on
1000 different data sets DN of the same size with N ¼ 400,
1000, 2000, 2500, 6000 and 8000 and a number of sources
p ¼ 4, 8, 10, 20, 40 and 50. Uniform sources were mixed
through an orthonormal matrix A that was randomly
chosen. The initial values of the separating matrix and the
stopping criterion were settled as those employed by
default in the FastICA package. Table 1 shows the mean
performance index PI, computed as in ([10] p. 219), and its
variance. As can be seen, the PI of FastICA2 is smaller
than the rest, which implies a closer estimate of the
separating matrix.

5. Conclusions and future work

Our work has analyzed some of the estimation errors
introduced by the use of finite date sets in the FastICA
algorithm introducing distribution-dependent bounds on
the generalization error. Such a two-step approach for
extracting independent components, in which the whiteness
of output variable is first imposed and then the sample-
fourth moment constrast is optimized later, may suffer
greater generalization errors than one-step methods in
which a term was employed effectively to ensure decorrela-
tion plus a second term based on the sample-fourth
cumulant. In particular, it is shown that the sample-fourth
cumulant has a lower variance in the generalization error
for some distributions which has been confirmed by
experiments in separating orthornormal uniform and
Laplacian sources provided with several finite sample sets
scale orthornormal mixing of uniform sources with different data set sizes

With whitening

FastICA with third power FastICA with tanh

3.7� 10�3/1.6� 10�3 4.7� 10�3/2.1� 10�3

3.3 x10�3/7� 10�4 4.3� 10�3/9� 10�4

2.1� 10�3/3� 10�4 2.7� 10�3/4� 10�4

3.7 x10�3/3� 10�4 4.7� 10�3/3� 10�4

3.1� 10�3/8� 10�4 4.0� 10�3/1� 10�4

3.0� 10�3/8� 10�4 3.8 x10�3/7� 10�4
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confirms greater accuracy and robustness than the stan-
dard version.

A straightforward outcome of this work is that a two-
step approach in which the whiteness of Y is first imposed
and then a HOS constrast function is restricted later may
incur greater generalization errors than one-step methods
in which a term C(Y) was employed effectively to ensure
decorrelation plus a term G(Y) based on HOS contrasts.
Future work will be concentrated in studying which C(Y)
and l in (1) should be employed in order to obtain a
suitable learning algorithm based on such contrasts.
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