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Abstract

A number of neural learning rules have been recently proposed for independent component analysis (ICA). The rules
are usually derived from information-theoretic criteria such as maximum entropy or minimum mutual information. In
this paper, we show that in fact, ICA can be performed by very simple Hebbian or anti-Hebbian learning rules, which
may have only weak relations to such information-theoretical quantities. Rather surprisingly, practically any nonlinear
function can be used in the learning rule, provided only that the sign of the Hebbian/anti-Hebbian term is chosen
correctly. In addition to the Hebbian-like mechanism, the weight vector is here constrained to have unit norm, and the
data is preprocessed by prewhitening, or sphering. These results imply that one can choose the non-linearity so as to
optimize desired statistical or numerical criteria. ( 1998 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Für die ICA (independent component analysis) wurden in jüngerer Zeit mehrere neuronale Lernregeln vorgeschlagen.
Diese Regeln werden üblicherweise von informationstheoretischen Kriterien, wie maximale Entropie oder minimale
wechselseitige Information, abgeleitet. In dieser Arbeit zeigen wir, da{ die ICA tatsächlich mit den sehr einfachen Hebb-
oder Anti-Hebb-Regeln durchgeführt werden kann, welche nur wenig Beziehung zu informationstheoretischen Grö{en
haben. Es ist überraschend, da{ praktisch irgendeine nichtlineare Funktion für die Lernregel verwendet werden kann,
solange man gewährleistet, da{ das Vorzeichen des Hebbschen Terms richtig gewählt wird. Zusätzlich zum Hebb-
ähnlichen Trainingsverfahren wird der Gewichtsvektor auf die Länge eins normiert und die Daten durch Dekorrelieren
vorverarbeitet. Die Ergebnisse lassen darauf schlie{en, da{ die Nichtlinearitäten so gewählt werden können, da{
gewünschte statistische oder numerische Kriterien optimiert werden. ( 1998 Elsevier Science B.V. All rights reserved.

Résumé

Un certain nombre de règles neuronales d’apprentissage ont été récemment proposées pour l’analyse en composantes
indépendantes (ICA). Les règles sont généralement dérivées de critères basés sur la théorie de l’information tels que la
maximisation de l’entropie ou la minimisation de l’information mutuelle. Dans cet article, nous montrons qu’en fait l’ICA
peut être effectuée par des règles d’aprentissage Hebbienne ou anti-Hebbienne très simples qui peuvent n’avoir qu’une
faible relation avec les quantités basées sur la théorie de l’information. De manière plutôt suprenante, pratiquement
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n’importe quelle fonction non-linéaire peut être utilisée dans la règle d’aprentissage pour autant que le signe du terme
Hebbien/anti-Hebbien soit choisi correctement. En plus de l’introduction d’un mecanisme de type Hebbien, le vecteur des
coefficients est dans notre cas contraint à une norme unité et les données sont prétraitées par préblanchiment ou
normalisation. Ces résultats impliquent la possibilité de choisir la non-linéarite de manière à optimiser les critères
statisitiques ou numériques désirés. ( 1998 Elsevier Science B.V. All rights reserved. ( 1998 Elsevier Science B.V. All
rights reserved.

Keywords: Independent component analysis; Blind source separation; Higher-order statistics; Hebbian learning; Neural
networks; Robustness

1. Introduction

1.1. Independent component analysis

Independent component analysis (ICA) [7,17] is
a recently developed signal processing technique
whose goal is to express a set of random variables
as linear combinations of statistically independent
component variables. The main applications of
ICA are in blind source separation [17], feature
extraction [2,18], and, in a slightly modified form,
in blind deconvolution [9]. In the basic form of
ICA [7], observe m scalar random variables
x
1
,x

2
,2,x

m
which are assumed to be linear combi-

nations of n unknown independent components, or
ICs, denoted by s

1
,s
2
,2,s

n
. The ICs are, by defini-

tion, mutually statistically independent, and zero-
mean. Let us arrange the observed variables x

i
into

a vector x" (x
1
,x

2
,2,x

m
)T and the IC variables

s
i
into a vector s, respectively; then the linear rela-

tionship is given by

x"As. (1)

Here, A is an unknown m]n matrix of full rank,
called the mixing matrix. The basic problem of ICA
is then to estimate the realizations of the original
ICs s

i
using only observations of the mixtures x

j
.

This is roughly equivalent to estimating the mixing
matrix A. Two fundamental restrictions of the
model are that, firstly, we can only estimate non-
Gaussian ICs (except if just one of the ICs is Gaus-
sian), and secondly, we must have at least as many
observed linear mixtures as ICs, i.e. m*n. Note
that the assumption of zero mean of the ICs is in
fact no restriction, as this can always be accomp-

lished by subtracting the mean from the random
vector x. A basic, but rather insignificant indeter-
minacy in the model is that the ICs and the
columns of A can only be estimated up to a multi-
plicative constant, because any constant multiply-
ing an IC in Eq. (1) could be cancelled by dividing
the corresponding column of the mixing matrix
A by the same constant. For mathematical conveni-
ence, one usually defines that the ICs s

i
have unit

variance. This makes the (non-Gaussian) ICs
unique, up to a multiplicative sign [7]. Note that
this definition of ICA implies no ordering of the
ICs.

The classical application of the ICA model is
blind source separation [17], in which the observed
values of x correspond to a realization of an m-
dimensional discrete-time signal x(t), t"1,2,2.
Then the components s

i
(t) are called source signals,

which are usually original, uncorrupted signals or
noise sources.

Another application of ICA is feature extrac-
tion [2,18]. Then the columns of A represent fea-
tures, and s

i
signals the presence and the coefficient

of the ith feature in an observed data vector x.
In blind deconvolution, a convolved version x(t) of

a scalar i.i.d. signal s(t) is observed, again without
knowing the signal s(t) or the convolution kernel
[9,27]. The problem is then to find a separating
filter f so that s(t)"f(t)*x(t). The equalizer f(t) is
assumed to be a FIR filter of sufficient length, so
that the truncation effects can be ignored. Due to
the assumption that the values of the original signal
s(t) are independent for different t, this problem can
be solved using essentially the same formalism as
used in ICA [7,28,29]. Indeed this problem can also
be represented (though only approximately) by
Eq. (1); then the realizations of x and s are vectors
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containing n"m subsequent observations of the
signals x(t) and s(t), beginning at different points
of time. In other words, a sequence of observa-
tions x(t) is such that x(t)"(x(t#n!1),
x(t#n!2),2,x(t))T for t"1,2,2 . The square
matrix A is determined by the convolving filter.
Though this formulation is only approximative, the
exact formulation using linear filters would lead to
essentially the same algorithms and convergence
proofs. Also blind separation of several convolved
signals can be represented combining these two
approaches.

As a preprocessing step we assume here that the
dimension of the data x is reduced, e.g., by PCA, so
that it equals the number of ICs. In other words, we
assume m"n. We also assume that the data is pre-
whitened (or sphered), i.e., the x

i
are decorrelated

and their variances are equalized by a linear trans-
formation [7]. After this preprocessing, model (1)
still holds, and the matrix A becomes orthogonal.

1.2. Hebbian and anti-Hebbian learning rules

Several neural algorithms for estimating the
ICA model have been proposed recently, e.g., in
[1,3,6,15,16,20,23]. Usually these algorithms use
Hebbian or anti-Hebbian learning. Hebbian learn-
ing has proved to be a powerful paradigm
for neural learning [22]. In the following, we call
both Hebbian and anti-Hebbian learning rules
‘Hebbian-like’. We use this general expression be-
cause the difference between Hebbian and anti-
Hebbian learning is sometimes quite vague. Typi-
cally, one uses the expression ‘Hebbian’ when the
learning function is increasing and ‘anti-Hebbian’
when the learning function is decreasing. In the
general case, however, the learning function need
not be increasing or decreasing, and thus a more
general concept is needed.

Hebbian-like learning thus means that the
weight vector w of a neuron, whose input is denoted
by x, adapts according to a rule that is roughly of
the form

*wJ$x f(wTx)#2 , (2)

where f is a certain scalar function, called the learn-
ing function. Thus the change in w is proportional

both to the input x and a nonlinear function of wTx.
Some kind of normalization and feedback terms
must also be added. Several different learning func-
tions f have been proposed in the context of ICA,
e.g., the cubic function, the tanh function, or more
complicated polynomials. Some of these, e.g., the
cubic function, have been motivated by an exact
convergence analysis. Others have only been moti-
vated using some approximations whose validity
may not be evident.

In this paper, we show that as long as the exact
(local) convergence is concerned, the choice of the
learning function f in Eq. (2) is not critical. In
fact, practically any non-linear learning function
may be used to perform ICA. More precisely, any
function f divides the space of probability distri-
butions into two half-spaces. Independent com-
ponents whose distribution is in one of the half-
spaces can be estimated using a Hebbian-like
learning rule as in Eq. (2) with a positive sign
before the learning term, and with f as the learn-
ing function. ICs whose distribution is in the
other half-space can be estimated using the same
learning rule, this time with a negative sign before
the learning term. (The boundary between the
two half-spaces contains distributions such that
the corresponding ICs cannot be estimated using
f. This boundary is, however, of vanishing vol-
ume.) In addition to the Hebbian-like mecha-
nism, two assumptions are necessary here. First,
the data must be preprocessed by whitening. Sec-
ond, the Hebbian-like learning rule must be con-
strained so that the norm of the weight vector has
constant norm.

Though in principle any function can be used in
the Hebbian-like learning rule, practical consider-
ations lead us to prefer certain learning functions to
others. In particular, one can choose the non-lin-
earity so that the estimator has desirable statistical
properties like small variance and robustness
against outliers. Also computational aspects may
be taken into account.

This paper is organized as follows. In Section 2,
a general motivation for our work is described. Our
learning rules are described in Section 3. Section 4
contains a discussion, and simulation results are
presented in Section 5. Finally, some conclusions
are drawn in Section 6.
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2. Cumulants versus arbitrary nonlinearities

Generally, for source separation and ICA, higher
than second-order statistics have to be used. Such
higher-order statistics can be incorporated into the
computations either explicitly using higher-order
cumulants, or implicitly, by using suitable nonlin-
earities. Indeed, one might distinguish between two
approaches to ICA which we call the ‘top-down’
approach and the ‘bottom-up’ approach.

In the top-down, or cumulant approach, one
typically starts from the independence requirement.
Mutual information is usually chosen as the
measure for the degree of independence [7]. Be-
cause direct estimation of mutual information is
very difficult, one then derives an approximative
contrast function, often based on cumulant expan-
sions of the densities, that can be computed more
easily in practice. Finally, the problem is solved
with an appropriate numerical method. The main
drawback of this approach is that the contrast
functions contain higher-order moments whose es-
timators usually have large variances and are not
tolerant to noise and numerical errors. Moreover,
the algorithms may be computationally compli-
cated.

There is an extensive literature on cumulant-
based contrast functions for ICA both in neural
network-like solutions (see e.g. [1,6]) and in signal
processing (see e.g. [4,5,7,8]), and it is not the pur-
pose of our paper to give a review of this main-
stream of ICA research. Instead, we concentrate
here on the ‘bottom-up’ approach in which the
higher order statistics are implicitly embedded into
the cost functions and algorithms by arbitrary non-
linear functions.

In our bottom-up approach, we start from an
arbitrary cost function, called the contrast function,
or from its related gradient algorithm. We then go
on to prove that the extrema of the contrast func-
tion coincide with independent components. It is
also possible to start from the algorithm directly
like in [23] and show that independent compo-
nents are asymptotically stable points of conver-
gence for the algorithm.

The bottom-up approach has some important
advantages. Firstly, computational simplicity is an
inherent advantage of this approach, because in

this way the estimation of cumulant tensors etc. is
avoided. A second advantage of the bottom-up
approach is that we are less restricted in the choice
of the contrast function. The nonlinear functions do
not have to be polynomials at all, but can be more
freely adapted to other characteristics of the prob-
lem, especially demands on statistically well-behav-
ing estimators. Such algorithms may also be more
suitable to a neural network computational envi-
ronment and might have some biological relevance
or plausibility as neural learning rules. A drawback
of our approach may be that it only works under
a restricted model. In the basic case studied here,
this is the linear mixing model, although generaliz-
ations are possible.

3. A general Hebbian-like learning rule

3.1. General one-unit contrast functions

Contrast functions [7] provide a useful frame-
work to describe ICA estimation. Usually they are
based on a measure of the independence of the
solutions. Denoting by w and x the weight vector
and the input of a neuron, and slightly modifying
the terminology in [7], one might also describe
a contrast function as a measure of how far the
distribution of the output wTx of a neuron is from
a gaussian distribution. The basic idea is then to
find weight vectors (under a suitable constraint)
that maximize the ‘non-gaussianity’ of the output.
With such weight vectors, the output is equal to
one of the independent components [9].

We mention in passing that ‘non-gaussianity’ is
also a widely used criterion in projection pur-
suit [10,11], and thus the criteria and learning rules
in this paper also apply to the projection pursuit
problem; however, in projection pursuit there is no
underlying mixing model and thus no independent
components.

One of the most widely used contrast functions
for ICA is the modulus of kurtosis, or the fourth-
order cumulant [8,15]. We think, however, that
there are good reasons to extend the class of con-
trast functions from cumulants to non-poly-
nomial moments, as we argued in Section 2. Many
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different measures of non-gaussianity can then be
used for ICA estimation. A large family of such
contrast functions was proposed by one of the
authors in [12].

To construct a general contrast function, let us
begin by choosing a sufficiently smooth even func-
tion, denoted by F. To obtain a contrast function
based on F, it is natural to consider the difference of
the expectation EMF(wTx)N from what it would be if
the output wTx were gaussian. As we are here only
interested in the higher-order structure of the data,
the variance of the output can be constrained to be
1. (Because the data is prewhitened, this can be
simply accomplished by the constraint EwE"1.)
Thus we obtain the following contrast function:

J
F
(w)"DEMF(wTx)N!EMF(l)ND , (3)

where EwE"1 and l is a standardized Gaussian
random variable.

3.2. Basic one-unit learning rule

Because the second term in Eq. (3) is constant,
maximizing the contrast function J

F
can be simply

accomplished by finding all the maxima and min-
ima of EMF(wTx)N, under the constraint EwE"1.
This can be implemented as stochastic gradient
descent or ascent, and leads to the following general
Hebbian-like learning rule:

*wJpx f (wTx), normalize w, (4)

where p"$1 is a sign determining whether we
are maximizing or minimizing EMF(wTx)N, f is the
derivative of F, and the normalization can be done
simply by dividing w by its norm.

A convergence analysis of Eq. (4) can be made by
analyzing the nature of the critical points w"$a

i
,

where a
i
is the ith column of the mixing matrix A. It

turns out that if a certain expression involving the
s
i
and F is positive for some i, then w converges, for

p"#1, to one of the corresponding columns
$a

i
of the matrix A. Thus we obtain one of the ICs

as the output wTx"$aT
i
x"$s

i
. (Recall that

A is orthogonal due to prewhitening). On the other
hand, if that same expression is negative for some i,
then the same kind of convergence is obtained by

using the opposite sign in the learning rule, i.e. by
setting p"!1.

The exact conditions for convergence are stated
in the following theorem (see also Theorem 1 in
[25]).

Theorem 1. Assume that the input data follows the
model (1), where x is prewhitened (sphered), and
that F is a sufficiently smooth even function. ¹hen
the local maxima (resp. minima) of EMF(wTx)N under
the constraint EwE"1 include those columns a

i
of

the mixing matrix A such that the corresponding in-
dependent components s

i
satisfy

EMs
i
f (s

i
)!f @(s

i
)N'0 (resp. ( 0), (5)

where f ()) is the derivative of F()). ¹he same is true
for the points !a

i
.

The proof is given in Appendix A.
Note that if w"$a

i
, then wTx"$s

i
. Using

this result, the independent components can be
found as the proper extrema. From the theorem it
follows that in the learning rule (4), all the columns
a
i
of A such that the corresponding IC s

i
fulfills

p"sign(EMs
i
f (s

i
)!f @(s

i
)N) (6)

are stable stationary points for w. This is also true
for !a

i
. Thus, by choosing p appropriately, one

can estimate practically any independent compon-
ent, using learning rule (4). The practical choice of
p is treated below. We assume here that the learn-
ing rate used in the implementation of (4) is an-
nealed to zero [15] so that the stochastic gradient
method really converges to one of the extrema of
the objective function [21].

The theorem stated above considers local ex-
trema, hence local convergence of the gradient
algorithms only. It seems plausible that the conver-
gence is global if the learning function is ‘simple’
enough, e.g. monotonous or almost monotonous,
or at least the basins of attraction of the desired
stationary points (columns of the mixing matrix A)
can be shaped by using a suitable nonlinear func-
tion F()). Numerical simulations confirming these
conjectures were reported in [12].
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Table 1
Summary of the algorithm (symmetric bigradient version)

(i) Observe m-dimensional data vectors x that are gener-
ated according to model (1). The components of s must
be statistically independent, and non-Gaussian. The
matrix A must be of full column rank, and thus have
less columns than rows.

(ii) Make the observed data x zero-mean by subtracting
its mean.

(iii) Sphere (whiten) the data. For details on whitening, see,
for example, [7,20]. If necessary, reduce simultaneously
the dimension of the data.

(iv) Initialize W(0) as an m]p random matrix whose
columns are orthogonal and of unit norm. The
number of columns p may be freely chosen as long as
it is not larger than m. Initialize c(0) as a zero vector of
p components.

(v) Update W as in Eq. (8). Update every component of
c
i
of c as in Eq. (7) (where in the place of w, the i-th

column of W is used). Examples of the choice of the
learning rates are given in Section 5.

(vi) If not converged, go back to step (v).

(vii) The estimates of the s
i

are given by wT
i
s, i"1,2,p,

where the w
i
are the columns of W. These estimates are

not ordered, and are only defined up to a multiplicative
constant.

3.3. Universal one-unit learning rule

The problem of choosing the right p in Eq. (4)
can be solved in two ways. First, we often have
some a priori information on the distributions of
the ICs. For example, speech signals are usually
highly super-Gaussian. One might thus evaluate
roughly EMs

i
f (s

i
)!f @(s

i
)N for some super-Gaussian

ICs and then choose p according to Eq. (6). For
example, if f is the tanh function, then p"!1
works for typical super-Gaussian ICs. Second, us-
ing the same principle as in [8,15], one might make
an on-line estimation of EMwTxf (wTx)!f @(wTx)N,
and use the sign of this estimate as the p in the
learning rule. This means that an on-line estimate
of that quantity, say c(t), is updated according to

*cJ[wTx f (wTx)!f @(wTx)]!c (7)

and then p is replaced by sign(c(t)) in the rule
(Eq. (4)). Thus one obtains a universal learning rule
that finds an IC of any distribution, provided only
that EMs

i
f (s

i
)!f @(s

i
)NO0.

3.4. A network of several neurons

In blind source separation and feature extrac-
tion, it is usually desired to estimate several, per-
haps all, independent components. (Note that this
is not necessary in blind deconvolution, in which
just one IC is enough. In projection pursuit, this
may also be unnecessary). To find n ICs, one can
use a network of n neurons, each of which learns
according to Eq. (4), and where p may be adapted
for each neuron as explained in the preceding
subsection. Of course, some kind of feedback is
then necessary to prevent the weight vectors from
converging to the same points. Because the col-
umns of A are orthogonal, classical orthogonalizing
feedbacks as in SGA [24], Sanger’s algorithm [26],
or the bigradient rule [20] can be used. A more
detailed discussion of such feedbacks can be found
in, e.g., [15, 20]. For example, the symmetric bi-
gradient feedback, which also contains the normal-
ization, would yield the following universal learn-
ing rule for the weight matrix W"(w

1
,2,w

n
)

whose columns are the weight vectors w
i

of the

neurons:

W(t#1)

"W(t)#k(t)x(t) f (x(t)TW(t))diag(sign(c
i
(t)))

#aW(t)(I!W(t)TW(t)), (8)

where a is a constant (for example, a"0.5), k(t) is
the ordinary learning rate, and the function f is
applied separately on every component of the row
vector x(t)TW(t). In this most general version of the
learning rule, the c

i
, i"1,2,n are estimated separ-

ately for each neuron according to Eq. (7). Of
course, the learning function f could also be differ-
ent for each neuron. This is, however, not neces-
sary, since the adaptation of the sign in the learning
rule is enough to enable the estimation of practic-
ally any IC, as implied by Theorem 1.

A summary of the method proposed in this paper
is given in Table 1.
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4. Discussion

4.1. Which learning function to choose?

The theorem of the preceding section shows that
we have an infinite number of different Hebbian-
like learning rules to choose from. This freedom is
the very strength of our approach to ICA. Instead
of being limited to a single non-linearity, our frame-
work gives the user the opportunity to choose the
non-linearity so as to optimize some criteria. These
criteria may be either task-dependent, or follow
some general optimality criteria.

Using standard optimality criteria of statistical
estimators, an analysis on the choice of the non-
linearity in Eq. (4) was performed in [14,13]. Here
we summarize some of the main points:
f Asymptotic variance depends on the contrast

function F used and the distributions of the ICs.
Most real-world signals seem to be super-Gaus-
sian, and for super-Gaussian ICs the asymptotic
variance, i.e., the mean-square error is minimized
by a contrast function that does not grow very
fast. Such a function may be approximated by,
e.g., the log cosh function, which corresponds to
using its derivative, the tanh function in the
learning rules, as was already suggested in, e.g.,
[3,19,20,23].

f Robustness against outliers is a very desirable
property for any estimation procedure. Also ro-
bustness can be achieved by choosing a function
F()) that does not grow too fast, e.g., the log cosh
function. The use of kurtosis, in contrast, leads to
a fourth order polynomial, which means that the
estimation is highly non-robust.

f Moreover, computational efficiency of learning
rules like Eq. (4) depends on the function f ())
and can be increased by a suitable choice.

4.2. Batch-mode implementation

The convergence of neural on-line learning rules
is sometimes problematic. Considerably faster con-
vergence can be obtained by using a fixed-point
algorithm, which is a more batch-like version of the
learning rule in Eq. (4). A general fixed-point algo-

rithm for an arbitrary non-linearity was introduced
in [12,13].

5. Simulation results

We applied the general Hebbian-like learning
rule in (4) using two different learning functions,
f
1
(y)"tanh(2y) and f

2
(y)"yexp(!y2/2). These

learning functions were chosen according to the
recommendations in [14]. The simulations consis-
ted of blind source separation of four time signals
that were linearly mixed to give raise to four mix-
ture signals.

First we applied the learning rules introduced
above on signals that have visually simple forms.
This facilitates checking the results and provides an
illustration of blind source separation for those not
familiar with the technique. Both super- and sub-
Gaussian signals were used. Only the mixed signals,
depicted in Figs. 1 and 2, were observed, and used
to estimate the original ‘source’ signals depicted in
Fig. 1. (For clarity, only the first 100 values are
plotted for each signal.) The mixing matrix was
randomly chosen:

A"C
!0.278 !0.818 0.062 !0.392

!2.707 !0.420 !0.621 !0.845

0.034 0.261 !0.475 !0.365

!0.331 0.627 !0.107 0.742D. (9)

To begin with, the data was prewhitened. The re-
sults of prewhitening are shown in Fig. 3. Then
our learning rule was applied on the whitened data,
using a network of four neurons. The signs p

i
were

estimated on-line and the feedback mechanism
used was the bigradient feedback as in Eq. (8);
in other words, the method was exactly the one
in Table 1. To speed up convergence, we used
batches of 30 input values at each update of the
weight vectors and the c

i
. The learning rate was set

at 0.1 for the first 500 iterations, and was then
reduced to 0.01 to ameliorate the accuracy of the
results (see below). The learning rate used in Eq. (7)
was fixed at 0.1. Altogether, 1000 iterations were
used.
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Fig. 1. Original source signals, or ICs, used in the simulations. Both super-Gaussian and sub-Gaussian signals were used.

Fig. 2. Linear mixtures of source signals. Only these signals were observed.
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Fig. 3. Results of pre-whitening. Before applying the Hebbian-like learning rules, the data was prewhitened, or sphered. This figure
shows that no real separation was achieved by sphering alone.

The estimated source signals for the two learning
functions are shown in Figs. 4 and 5. The corres-
ponding estimates of A, which are obtained by
applying the inverse of the whitening transform on
W, were

AK "C
0.388 0.050 !0.820 0.281

0.783 !0.646 !0.411 2.707

0.353 !0.464 0.275 !0.034

!0.751 !0.110 0.628 0.326D, (10)

when the non-linearity was tanh, or f
1
, and

AK "C
0.395 0.057 !0.816 0.284

0.788 !0.642 !0.401 2.709

0.351 !0.466 0.274 !0.035

!0.755 !0.115 0.623 0.325D, (11)

when the non-linearity was the derivative of the
Gaussian, or f

2
. Clearly, both of these two non-

linear learning functions enabled the estimation of
the original ICs, as indicated by our theorem. (Note
that it is impossible to distinguish between s

i
(t) and

!s
i
(t), and that the order of the independent com-

ponents is not defined. This means that the col-
umns in AK are only defined up to a permutation,
and a multiplicative sign.) Moreover, the simula-
tions confirm that simultaneous estimation of the
multiplicative signs p

i
enables separation of ICs of

very different distributions using a single learning
function.

To study the convergence properties of the algo-
rithms in more detail we performed a second set of
simulations. This time we used signals that were
temporally white noise, to highlight the fact that no
temporal structure is needed (or used) in the basic
ICA model. Four independent components of dif-
ferent distributions (uniform, binary, Laplace, and
cube of a Gaussian variable) were used. This time,
the learning samples were used one at a time. The
learning rate was set as 0.01 for the first 2000
iterations, after which it was diminished to 0.002
to study the effect of the learning rate. The total
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Fig. 4. Estimated source signals using the Hebbian-like learning rule with the tanh function ( f
1
). The two signals in the upper row were

found by anti-Hebbian learning and the other two by Hebbian learning.

Fig. 5. Estimated source signal using the derivative of the Gaussian function ( f
2
) as the non-linearity. The two signals in the upper row

were found by anti-Hebbian learning and the other two by Hebbian learning.

number of data points used was 3000. The simula-
tions were made for 10 different initial values of W,
and the results were averaged over trials. Two dif-
ferent non-linearities (the same ones as above) were

used. We defined a simple error measure based on
the matrix WTA where A is the mixing matrix. This
matrix should converge to a permutation matrix
(up to multiplicative signs). Thus the sum of the
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Fig. 6. Convergence of the learning rule with two different non-linearities. Approximately 1500 iterations were sufficient for
convergence. More accurate results were obtained by decreasing the learning rate after 2000 iterations. The results are averaged over 10
trials.

squares of the elements of this matrix was com-
puted, excluding the 4 largest elements.

Fig. 6 shows the values of the convergence index
for the two nonlinearities. One sees that con-
vergence was achieved at approximately 1500
iterations. The diminuation of the learning rate
diminished greatly the fluctuations in the estimates.
This illustrates the fact that annealing the learning
rate makes the learning more accurate. A larger
learning rate in the beginning, on the other hand,
enabled faster learning.

6. Conclusion

It was shown how a large class of Hebbian-like
learning rules can be used for ICA estimation. In-
deed, almost any nonlinear function can be used in
the learning rule. The critical part is choosing cor-
rectly the multiplicative sign in the learning rule as
a function of the shapes of the learning function and
the distributions of the independent components. It
was also shown how the correct sign can be esti-
mated on-line, which leads to a universal learning
rule that estimates an IC of practically any distribu-
tion. Thus one has a large freedom in the choice of
the nonlinearity in the Hebbian-like learning rule.
This result is important because practically all

other ICA procedures use a fixed nonlinearity or
a limited number of them. In our framework it is
possible, however, to choose the non-linearity from
a large class of candidates. This enables using
a non-linearity that is particularly suited for a given
context. One can choose it so as to optimize the
performance of the learning rule according to stat-
istical or numerical criteria. Another advantage of
our approach is that the one-unit learning rules
enable the separation of individual independent
components.

Appendix A. Proof of Theorem 1

Denote by H(w) the function to be mini-
mized/maximized, EMF(wTx)N. Make the ortho-
gonal change of coordinates z"ATw. Then we can
calculate the gradient as +H(z)"EMs f (zTs)N and
the Hessian as +2H(z)"EMssT f @(zTs)N. Without
loss of generality, it is enough to analyze the stabil-
ity of the point z"e

1
, where e

1
"(1,0,0,0,2),

which corresponds to w"a
1
. (Because F is even,

nothing changes for w"!a
1
) Evaluating the

gradient and the Hessian at point z"e
1
, we get

using the independence of the s
i
,

+H(e
1
)"e

1
EMs

1
f (s

1
)N (A.1)
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and

+2H(e
1
)"diag(EMs2

1
f @(s

1
)N,EM f @(s

1
)N, EM f @(s

1
)N,2).

(A.2)

Making a small perturbation e"(e
1
,e
2
,2), we ob-

tain

H(e
1
#e)"H(e

1
)#eT+H(e

1
) #

1

2
eT+2H(e

1
)e

#o(EeE2) (A.3)

"H(e
1
)#EMs

1
f (s

1
)Ne

1

#

1

2CEMs2
1

f @(s
1
)Ne2

1
#EM f @(s

1
)N +

i;1

e2
i D

#o(EeE2). (A.4)

Due to the constraint EwE"1 we get e
1
"

J1!e2
2

!e2
3
!2!1. Due to the fact that

J1!c"1!c/2#o(c), the term of order e2
1

in
Eq. (A.4) is o(EeE2), i.e., of higher order, and can be
neglected. Using the aforementioned first-order ap-

proximation for e
1

we obtain e
1
" ! +

i;1

e2
i
/2#

o(EeE2), which finally gives

H(e
1
#e)"H(e

1
)#

1

2
[EM f @(s

1
)!s

1
f (s

1
)N] +

i;1

e2
i

#o(EeE2), (A.5)

which clearly proves z"e
1

is an extremum, and of
the type implied by the condition of the theorem.

A more detailed proof could be easily formulated
along the lines of the proof of Theorem 1 in [25],
where a similar problem is considered for robust
regression.
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