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Spurious Solution of the Maximum
Likelihood Approach to ICA

Fei Ge and Jinwen Ma

Abstract—For the separation of linear instantaneous mixtures
of independent sources, many Independent Component Analysis
(ICA) algorithms can learn the separating matrix by optimizing
some objective functions derived from various criteria. The Max-
imum Likelihood (ML) principle, with hypothesized model pdf’s,
provides an objective function which is commonly used. It is gen-
erally considered that the ML approach leads to a separating solu-
tion as long as the kurtosis signs of the model pdf’s can correspond
and equal to those of the sources, respectively, in some order, which
is referred to as the one-bit-matching condition. In this letter, we
present an experimental analysis on spurious solution of the ML
approach and show that spurious maximum of the objective func-
tion really exists in certain cases even if the one-bit-matching con-
dition is satisfied.

Index Terms—Blind source separation, independent component
analysis (ICA), maximum likelihood (ML), one-bit-matching con-
dition, spurious solution.

I. INTRODUCTION

F OR the blind separation of instantaneously mixed inde-
pendent non-Gaussian signals, the Independent Compo-

nent Analysis (ICA) [1] is a commonly utilized statistical tech-
nique, which exploits only the amplitude statistics of signals [2].
Under this model, the observed signals can be represented by
an -dimensional random vector , which is simply a
linear transformation of vector of the latent source signals that
are mutually independent. For simplicity we assume that is
square and invertible, then the sources can be reconstructed as

, if is a separating matrix, i.e., has only one
nonzero entry in each row and in each column.

Various approaches can lead to blind source separation, for
example, minimizing mutual information (MMI) [1], [3], in-
formation maximization (Infomax) [4]. If the joint pdf of the
sources is known as , the Maximum Like-
lihood (ML) approach provides a consistent estimator of , by
maximizing the normalized log-likelihood function [2]:

(1)

under a given set of i.i.d. samples . However, in the
case of ICA, in (1) is not known in practical situations.
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In the literature, when hypothesized model pdf’s were
used instead of , maximizing the likelihood of the data
could yield source separation as long as the true and hypothe-
sized pdf’s did not differ too much. By letting

, such ML-type objective function for source separation turns
out to be

(2)

where is the -th row of . Essentially, the Infomax algo-
rithm [4] has the same optimizing criteria [2].

An important but unsettled question is: to what extent can
each model pdf differ from true source pdf, while ensuring any
maximum point of (2) to be a valid separating matrix? Based on
experimental experiences, Xu et al. [5] suggested the one-bit-
matching (OBM) condition that “there is a one-to-one same-
sign-correspondence between the kurtosis signs of all source
pdf’s and the kurtosis signs of all model pdf’s” and conjectured
that it is sufficient for any local maximum point of ML-type
objective function to be a separating matrix.

The OBM conjecture asserts spurious-free solution for the
ML approach. However, in [6] it has been illustrated for two
trimodal sources that even when the source model is exact, spu-
rious solutions may be encountered. This may be regarded as a
counter example. Recently, there were some theoretical analyses
[7], [8] on the OBM conjecture, but the objective function was
simplified and quite different from (2).

In this letter, we give some examples showing that the OBM
condition is not sufficient, even if the global maximum of the ob-
jective function is found. First, we revisit the stability conditions
for adaptive algorithms and their link to the OBM condition is
analyzed. Then, some specific examples evidencing the spurious
maxima of ML-type objective function, with or without white-
ness constraint, are presented with detailed analysis and numer-
ical simulations.

II. LOCAL CONVERGENCE ISSUES OF
ADAPTIVE ML ALGORITHM

Since the OBM conjecture does not specify a particular
optimization procedure, it applies to general adaptive gradient
methods, for which the stability analysis has been established
[9], [10]. An equilibrium of an adaptive learning rule for (2) is
characterized by

(3)

where , and

(4)
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Fig. 1. Three different model pdf’s and the corresponding objective functions,
for the mixture of two uniformly distributed sources.

or characterized by

(5)
(6)

if whiteness constraint is imposed.
Let

(7)

and then if is a local maximum point of (2), it is necessary
and sufficient that

(8)
(9)

hold, or under whiteness constraint

(10)

hold [10].
Given the source pdf’s and , it is not difficult to check

the stability of separating matrices, but still, there is no guar-
antee that other solutions (matrices) are unstable—the global
behavior of an adaptive algorithm is untouched. The OBM con-
jecture, if it was true, ensures global convergence or spurious-
free solutions. It can be interpreted as: if the kurtoses of
and those of are matched in certain order, any equilibrium
satisfying the stability conditions is a separating matrix. But this
is in doubt, considering the particular example in [6].

Here we want to stress that the OBM condition does not en-
sure local convergence either. Its requirement for the model
pdf’s is simply kurtosis sign matching to the sources. Along
with scaling constraints (3) or (5), it does not generally imply
the stability of a separating matrix. As pointed out by Cardoso
[2], the stability depends on the kurtosis signs of the sources
only when cubic nonlinearities are used. Thus, we may
suspect that there might be cases (combinations of source and
model pdf’s) when the OBM condition is satisfied but none of
the separating matrices that meet (3) (or (6) under whiteness

constraint) satisfy the stability conditions. Then an adaptive al-
gorithm cannot converge to a separating matrix and must result
in a spurious solution. Such cases have been identified and will
be shown in the following sections.

III. SPURIOUS MAXIMA OF ML-TYPE OBJECTIVE
FUNCTION UNDER WHITENESS CONSTRAINT

For ease of analysis we consider the simplest case involving
only two sources with whiteness constraint on and . Then
the transfer matrix is a rotation or reflection, which can be
parameterized as

(11)

The pdf of is now determined by . For a
particular , the pdf of or can be represented in an inte-
gration form, because the pdf of linear combination
of two independent variables and is the convolution

(12)

In each of the following two examples, we utilize the same
model pdf for both sources because they belong to the
same class of either sub-Gaussian or super-Gaussian. Then, the
ML-type objective function can be simplified as

(13)

If it has local maxima only at , the two sources
can be separated by any local optimizing algorithm.

A. Two Sub-Gaussian Sources

Here and are chosen to follow the uniform distribu-
tion on , whose kurtosis is . The pdf’s of
and , which are piecewise linear functions, can be derived
easily using (12). We consider the piecewise linear function

(14)

as the model pdf, where are parameters. To en-
sure that is a pdf with unit variance, it must hold that

and , so
there is just one free parameter.

We have tested three model pdf’s (subscripted by a,b and c)
with equal to and , repectively. The model pdf’s
and corresponding objective functions

(15)

are plotted in Fig. 1. As is periodic, we just show the
curves in .

These model pdf’s are quite different in shape from that of
the sources, but we can see that the maxima of and
are all corresponding to separating solutions. Actually,
is precisely , with kurtosis , so it “matches”
the source distribution, considering the OBM condtion. But the
kurtosis of is 0.594, and thus the OBM condition is not
satisfied. On the contrary, the kurtosis of is , which



GE AND MA: SPURIOUS SOLUTION OF THE MAXIMUM LIKELIHOOD APPROACH TO ICA 657

TABLE I
SIMULATED SEPARATION QUALITY (DEVIATION OF )

ON THE TWO UNIFORM SOURCES

Fig. 2. Pdf’s of the two super-Gaussian sources in our test example.

Fig. 3. Evolution of versus , for the mixture of
two specially chosen super-Gaussian sources.

“matches” that of the sources, but only the minima of are
corresponding to separating solutions and in this case the ML
approach must fail.

Numerical simulations with randomly generated data
of varying sample size have been performed, using these
three model pdf’s, respectively. For each simulation, a local
maximum of the likelihood function was sought and the corre-
sponding has been recorded. Table I lists the deviations (in
degrees, averaged value over 1000 simulations) of from

. It can be seen that with the increase of sample size, the
separation quality improves for and , but spurious
maxima maintain the same level of separation failure for .
Therefore, the simulation results confirmed the analysis from
Fig. 1.

B. Two Super-Gaussian Sources

In this example the pdf for source is designed to be

(16)

Fig. 4. Objective function with hyperbolic secant model pdf for sepa-
rating the two specially chosen super-Gaussian sources.

It has tails decaying like a Laplacian pdf, but has two peaks at
and . The kurtosis sign of depends on

and . We set here ( is set such that the variance is 1),
and its kurtosis is 0.439. Fig. 2(left) sketches this pdf.

The distribution for is chosen as the normalized -distribu-
tion:

(17)

When the degree of freedom goes to -distribution con-
verges to Gaussian. If , it has kurtosis . The pdf’s
for and are sketched in Fig. 2(right). Actually
when the pdf is very close to Gaussian, though it still
has positive kurtosis.

We try to separate the two sources from their mixtures using
hyperbolic secant model pdf of unit variance:

(18)

which is a common choice for separating super-Gaussian
sources (with ). Its kurtosis is
positive. The objective function in this example becomes

(19)

Using numerical integration method, we can sketch out the
curve of , as shown in Fig. 3. For

, the results with and are both shown. Since
and have different pdf’s, does not have the

same shape of . Accordingly, Fig. 4
sketches . In both cases, spurious maxima exist, and the
separating solutions are in fact corresponding to the minima of

.
Numerical simulations with randomly generated data have

also been performed using the source and model pdf’s above.
The deviations (in degrees, averaged value over 1000 simula-
tions) of from desired are listed in Table II. As
expected, the separation quality does not improve with increase
of sample size.

IV. FURTHER DISCUSSION

In the previous section we have shown by example that in the
ML approach under whiteness constraint, inappropriate model
pdf can result in spurious solution, even if the kurtosis signs
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TABLE II
SIMULATED SEPARATION QUALITY (DEVIATION OF ) ON THE TWO

SPECIALLY CHOSEN SUPER-GAUSSIAN SOURCES

of real and assumed source distributions are consistent. That is,
the OBM condition is not sufficient to ensure the global maxima
of ML-type objective function are corresponding to separating
solutions.

For regular ML approach without whiteness constraint, the
surface of the objective function is more difficult to investi-
gate, even for two-source mixing. But focusing on the stability
conditions, we are able to construct some counter example for
the OBM conjecture. Inspired by Douglas [11], we consider
the symmetric discrete distribution , with

and
. We want two sources and with iden-

tical distributions being super-Gaussian (having positive kur-
tosis) but not separable using the hyperbolic secant model pdf

, or equivalently the nonlinearity
.

For any separating matrix, it must yield and
(or and ) where and are scaling

factors. Taking into count the constraint (3) for an equilibrium,

(20)

must hold for . If are all fixed, this equa-
tion has only two opposite solutions for . We want so
that if the sources are separated, there is no amplitude change.
The kurtosis constraint is that

(21)

to satisfy the OBM condition. Together with , we
have constructed a particular distribution with

and . Its variance and normal-
ized kurtosis are respectively 2.04 and 0.995.

However, according to (7),

is negative, so (9) cannot be satisfied. Hence, no separating ma-
trix can be stable. Furthermore, we have performed numerical
simulation experiments with random mixtures of two sources
generated from this distribution, with initialized to be .
The natural gradient adaptive algorithm always converged to a
spurious solution, which left the entries of almost equal in
absolute value.

So far we have discussed ML-type algorithms with fixed
model pdf’s, or equivalently fixed nonlinearities for an adaptive

implementation. We have not touched the circumstances when
the model pdf is parameterized, i.e., ICA algorithms with flex-
ible density model, such as [5], [12]. Whether such flexibility
in source pdf modeling can avoid spurious solutions caused by
inappropriate modeling needs further investigation.

Furthermore, for the information theoretic or entropy contrast
function which does not assume any source model, the existence
of spurious solutions has been identified [13]. Besides, there are
other ICA approaches that have been proved to be free from
spurious solutions (see, e.g., [14] and [15]).

V. CONCLUSION

We have presented some analyses on the ML-type objective
function for the ICA with predetermined source model pdf’s. It
is shown by experimental evidences that spurious solutions can
exist for both regular ML and ML under whiteness constraint,
even if the kurtosis signs of the model pdfs’ and those of the
true sources are consistent. This makes clear that the one-bit-
matching condition is not sufficient for an ML algorithm to get
a separating solution and thus the one-bit-matching conjecture
is untrue.
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