
Notes on the Infomax Algorithm

Upamanyu Madhow

Abstract

We briefly review the maximum likelihood interpretation of the extended Infomax algo-
rithm for independent component analysis (ICA), including the concept of relative gradient
used for iterative updates.

1 Maximum Likelihood Formulation

Consider a single snapshot of the mixing model

X = AS

where X, S are n × 1, and A is n × n. We would like to “unmix” the sources by applying an
n× n matrix W to get

Y = WX

In maximum likelihood (ML) estimation, we estimate a parameter θ based on observation x by
maximizing the conditional density p(x|θ). In order to apply this approach to estimation of W,
we must know the conditional density of x given W. Given W, we can compute Y = WX,
and we apply ML estimation to this setting by assuming that we know the density of Y. For
the “right” W, we assume that (a) the components of Y are independent, (b) they have known
marginal densities pi(yi), i = 1, .., n.

In practical terms, these marginal densities do not need to be the same as those of the actual
independent components: all they do is to provide nonlinearities of the form d

dyi
log p(yi) for

iterative update of W. As we have seen from our discussion of the fastICA algorithm, there
are a broad range of nonlinearities that can move us towards non-Gaussianity and independence
(although only the fourth order nonlinearity is guaranteed to converge to a global optimum).
Thus, it makes sense that there should be some flexibility in the choice of nonlinearities in
the Infomax algorithm, which is essentially similar in philosophy (except that it uses different
nonlinearities and a gradient-based update rather than a Newton update).

Equating the probabilities of small volumes, we have

p(x|W)|dx| = p(y)|dy|

Since
|dy|

|dx|
= |det(W)|

we have
p(x|W) = p(y)|det(W)|

1

Taking the log and using the independence of the components of Y, we obtain that the cost
function to be maximized over W is

J(W) = log p(x|W) = log |det(W)|+

n
∑

i=1

log pi(yi) (1)

We would now like to adapt W to maximize this cost function using gradient ascent. It has
been argued by Cardoso and Laheld [2] that the “right” gradient to use is one that depends
on how close the outputs Y are to their desired distributions, rather than what combination of
X and W was used to get there. This leads to the concept of relative gradient, reviewed next.
For the setting of interest to us, this concept coincides with that of natural gradient introduced
by Amari [3], who shows that it gives the steepest descent/ascent direction when the parameter
being optimized follows a Riemannian rather than a Euclidean geometry. It is beyond our present
scope to get into these arguments in detail.

2 Relative Gradient

The idea behind relative gradient is as follows: we wish to change W in reaction to changes in
Y = WX, rather than individually to changes in X and W. To this end, consider perturbations
to W of the form

∆W = EW

where E is a matrix with small entries. We now get

Y +∆Y = (W +∆W)X = (W + EW)X
= Y + EY = (I+ E)Y

The relative gradient ▽r J(W) is defined via the following equation:

J(W + EW) = J(W) + 〈▽r J(W), E〉+ o(E) (2)

where the matrix inner product used above is defined in the same manner as vector inner products
(multiplying component by component and then adding):

〈M,N〉 =
∑

i,j

MijNij = trace(MTN〉

Let us now compute the relative gradient for our particular cost function, beginning with the
logarithm of the determinant:

log |det(W + EW)| − log |det(W)| = log |det(W + EW)W−1|
= log |det(I+ E)|

where we have used
det(MN) = det(M)det(N)

and its corollary det(M−1) = 1/det(M). Now, note that for small perturbations of the identity
matrix, the off-diagonal terms make second order contributions to the determinant. We therefore
obtain

log |det(I+ E)| = logΠi(1 + Eii) + o(E) =
∑

i log(1 + Eii) + o(E)
=

∑

i Eii + o(E) = 〈I, E〉+ o(E)

2

Comparing with (2), we can read off that the relative gradient of log |det(W)| is simply I.

Now, let us consider one of the log pdf terms, log pi(yi): changing W by EW changes yi by
(Ey)i =

∑

k Eikyk. The corresponding change in the log pdf is computed as

log pi (yi + (Ey)i)− log pi(yi) ≈
∂ log pi(yi)

∂yi
(Ey)i =

∂ log pi(yi)

∂yi

∑

k

Eikyk

Let G(Y) =
∑

i log pi(yi) denote the sum of the log pdf terms, the change in this term is given
by

G(Y + EY)−G(Y) ≈
∑

i
∂ log pi(yi)

∂yi

∑

k Eikyk

=
∑

i,k AikEik = trace
(

ATE
)

where

Aik =
∂ log pi(yi)

∂yi
yk

Comparing with (2), we see that the relative gradient of this term is the matrix A, which we
now put in more compact form. Defining the column vector

φ(Y) =

(

−
∂ log p1(y1)

∂y1
, ...,−

∂ log pn(yn)

∂yn

)T

we have
A = −φ(Y)YT

The relative gradient of the function J(W) in (1) is therefore given by

▽
r J(W) = I− φ(Y)YT (3)

We now choose the relative perturbation to follow the relative gradient, so that the change in
W satisfies

∆W ∼▽
r J(W)W =

(

I− φ(Y)YT
)

W

This yields the following gradient ascent algorithm:

Wn+1 = Wn + λn

(

I− φ(Y)YT
)

Wn

3 Choice of nominal densities

See [1] for the choices of densities that they use for super- and sub-Gaussian sources. They
choose these so as to get φ(y) = y + tanh(y) for super-Gaussian and φ(y) = y − tanh(y) for
sub-Gaussian sources, which is particularly convenient, because we can toggle between these two
cases using a single sign parameter. This yields

Wn+1 = Wn + λn

(

I−K tanh(Y)YT −YYT
)

Wn (4)

where K is a diagonal matrix, with Kii = +1 is we are trying to select a super-Gaussian source
and Kii = −1 to select a sub-Gaussian source. The sign is chosen to reinforce the trend of the
current solution, as follows.

3

The stability condition for a gradient ascent rule of the form (3) is that

E[φ′

i(yi)]E[y
2
i]− E [yiφi(yi)] > 0 (5)

For φi(yi) = yi + tanh(yi) (super-Gaussian), this reduces to

E[1 + sech2(yi)]E[y
2
i]− E[y2i + yi tanh(yi)] > 0

which simplifies to
E[sech2(yi)]E[y

2
i]− E[yi tanh(yi)] > 0

For φi(yi) = yi − tanh(yi) (sub-Gaussian), this reduces to

E[1 − sech2(yi)]E[y
2
i]− E[y2i − yi tanh(yi)] > 0

which simplifies to
E[sech2(yi)]E[y

2
i]− E[yi tanh(yi)] < 0

Thus, we can set
Kii = sign

(

E[sech2(yi)]E[y
2
i]− E[yi tanh(yi)]

)

(6)

where, as usual, the expectations are computed by empirical averaging.

In practical terms, we would zero mean and sphere the data, and set W to be an arbitrary
orthogonal matrix and then start updating as in (4). The idea of setting K according to (6) is
to reinforce trends of sub- or super-Gaussianity that are already in place.

Note that the original infomax algorithm [4], which can be interpreted as corresponding to
p(y) ∼ 1

cosh y
(the original derivation in (7 is quite different), is given by

Wn+1 = Wn + λn

(

I− tanh(Y)YT
)

Wn (7)

It is worth keeping in mind that, if we are only interested in sub-Gaussian sources, then the
original Infomax algorithm may be quite effective, and may be faster than the extended Infomax
algorithm (see Figure 5 in [1]) because it does not need to adapt the sign of the switching
parameters along the diagonal of K in (4).

References

[1] T.-W. Lee, M. Girolami, T. J. Sejnowski, “Independent component analysis using an extended
Infomax algorithm for mixed sub-Gaussian and super-Gaussian sources,” Neural Computa-

tion, vol. 11, no. 2, 1999.

[2] J.-F. Cardoso, B. Laheld, “Equivariant adaptive source separation,” IEEE Trans. Signal

Processing, vol. 44, no. 12, pp. 3017-3030, December1996.

[3] S.-I. Amari, “Natural gradient works efficiently in learning,” Neural Computation, vol. 10,
no. 2, pp. 251-276, February 1998.

[4] A. J. Bell, T. J. Sejnowski, “An information-maximization approach to blind separation and
blind deconvolution,” Neural Computation, vol. 7, pp. 1129-1159, 1995.

4

