Fourier Analysis for Engineers

S. Chandrasekaran

March 31, 2009

Chapter 1

Basic real analysis

A good reference for this chapter is the book Advanced Mathematical Analysis by Richard Beals.
We will denote the set of real numbers by \mathbb{R}. We will assume that the basic properties of the real numbers are obvious. The one non-obvious property we will assume as an axiom.

Definition 1.1. A number M is said to be an upper bound for a subset S of \mathbb{R} if $s \leqslant M$ for all $s \in S$.

Axiom 1.2. If S is a subset of \mathbb{R} with a finite upper bound, then there exists a number $\operatorname{lub}(S)$, called the least upper bound of S, which is an upper bound of S that is less than every other upper bound of S.

Exercise 1.1. Show that for every $\epsilon>0$ there is an $x \in S$ such that $x>\operatorname{lub}(S)-\epsilon$.
Exercise 1.2. Give an example of a bounded subset of the rational numbers that has no greatest lower bound.

Definition 1.3. A number L is said to be a lower bound for a subset S of \mathbb{R} if $s \geqslant L$ for all $s \in S$.

Lemma 1.4. If S is a subset of \mathbb{R} with a finite lower bound, then there exists a number $\operatorname{glb}(S)$, called the greatest lower bound of S, which is a lower bound of S that is greater than every other lower bound of S.

Proof. Exercise. Hint: Apply axiom 1.2 to $-S$.
Notation 1.5. The least upper bound of S is also called the supremum of S and denoted by $\sup (S)$. Similarly the greatest lower bound of S is also called the infimum of S and denoted by $\inf (S)$.

Exercise 1.3. Show that $\inf (S) \leqslant \sup (S)$.
Definition 1.6. Let $a<b$. Then the subset $\{x \mid a<x<b\}$ of \mathbb{R} is called an open interval and denoted by (a, b).

Definition 1.7. An open ball centered at a of radius r is the open interval $(a-r, a+r)$ and $i s$ denoted by $B_{r}(a)$.

Definition 1.8. A neighborhood of a point is an open ball centered at that point.
Definition 1.9. A subset S of \mathbb{R} is said to be open if every point in S has a neighborhood that is contained in S. The empty set is assumed to be open.

Exercise 1.4. Show that an open interval is an open set.
Proposition 1.10. The (possibly infinite) union of open sets is open.
Proof. Exercise.
Proposition 1.11. The finite intersection of open sets is open.
Proof. Exercise.

Definition 1.12. A point x is said to be a limit point of a subset S if every neighborhood of x also contains a point of S other than x itself.

Exercise 1.5. Show that a and b are limit points of the open interval (a.b).
Definition 1.13. Let $a \leqslant b$. Then the subset $\{x \mid a \leqslant x \leqslant b\}$ of \mathbb{R} is called a closed interval and denoted by $[a, b]$.

Definition 1.14. A subset of \mathbb{R} is said to be closed if it contains all its limit points. The empty set is assumed to be closed.

Exercise 1.6. Let $-\infty<a<b<\infty$. Show that $[a, b]$ is a closed set.
Exercise 1.7. Show that a finite subset of \mathbb{R} has no limit points. Thus they are closed (vacuously).
Exercise 1.8. Show that if $x \notin S$ is not a limit point of S then there is a neighborhood of x that does not intersect S.
Exercise 1.9. Show that the finite union of closed sets is a closed set. Hint: Show that if x is not in the union then it has a ball, one for each closed set, that does not intersect that closed set. The intersection of these balls gives a non-intersecting ball. Thus the union is not missing a limit point.

Exercise 1.10. Show that the (possibly infinite) intersection of closed sets is a closed set.
Notation 1.15. If S is a subset let $S^{c}=\{x \mid x \notin S\}$ denote the complement of S.
Exercise 1.11. Show that $\left(\bigcup_{n} S_{n}\right)^{c}=\bigcap_{n} S_{n}^{c}$, where S_{n} is a set. The number of sets can be infinite.
Exercise 1.12. Show that an open set can be written as the (possibly infinite) union of open intervals.
Proposition 1.16. A subset is open iff its complement is closed.
Proof. Exercise.
Definition 1.17. A sequence of numbers x_{n} for $n=1,2, \ldots$, is said to have a limit x, if for every $\epsilon>0$ there exists an N such that for all $n>N,\left|x_{n}-x\right|<\epsilon$. We denote this by $\lim _{n \uparrow \infty} x_{n}=x$, and say that the sequence x_{n} converges to x. If such an x does not exist we say that the sequence x_{n} diverges.

Exercise 1.13. Show that the sequence $x_{n}=n$ for $n=1,2, \ldots$, diverges.
Exercise 1.14. Show that the sequence $x_{n}=(-1)^{n}$ for $n=1,2, \ldots$, diverges.
Exercise 1.15. Show that the limit of a sequence is unique if it exists.
Exercise 1.16. Show that a convergent sequence is bounded.
Exercise 1.17. Let x_{n} be a bounded sequence of non-decreasing real numbers; that is, there is an $M<\infty$ such that $\left|x_{n}\right|<M$, and $x_{n} \leqslant x_{n+1}$. Show that $\lim _{n \uparrow \infty} x_{n}$ exists. Hint: Look at the supremum of the set $\left\{x_{n}\right\}$.
Exercise 1.18. Show that if $a>0$ then $\lim _{n \uparrow \infty} a^{1 / n}=1$. Hint: If $a<1$ then this is an increasing sequence.
Exercise 1.19. Show that $\lim _{n \uparrow \infty} n^{1 / n}=1$. Hint: Let $n^{1 / n}=1+x_{n}$. Then by the binomial expansion $n \geqslant$ $1+n x_{n}+\frac{1}{2} n(n-1) x_{n}^{2} \geqslant \frac{1}{2} n(n-1) x_{n}^{2}$.
Let x_{n} be a bounded real sequence and define $A_{N}=\left\{x_{n} \mid n \geqslant N\right\}, l_{N}=\inf \left(A_{N}\right)$ and $u_{N}=\sup$ $\left(A_{N}\right)$.

Exercise 1.20. Show that l_{N} is a bounded non-decreasing sequence and u_{N} is a bounded non-increasing sequence. Therefore both $\lim _{N \uparrow \infty} l_{N}$ and $\lim _{N \uparrow \infty} u_{N}$ exist.
Exercise 1.21. Let $x_{1}=-1, x_{2}=4$ and $x_{n}=n \bmod 4$ for $n=3,4, \ldots$. Find $\lim _{N \uparrow \infty} l_{N}$ and $\lim _{N \uparrow \infty} u_{N}$ for this sequence.

Definition 1.18. Let x_{n} be a bounded real sequence. We call $\lim _{N \uparrow \infty} l_{N}$ as the lower limit of the sequence x_{n} and denote it by $\lim \inf x_{n}$. We call $\lim _{N \uparrow \infty} u_{N}$ as the upper limit of the sequence x_{n} and denote it by $\lim \sup x_{n}$.

Exercise 1.22. Show that $l_{N} \leqslant u_{M}$.
Exercise 1.23. Show that $\lim \inf x_{n} \leqslant \lim \sup x_{n}$.

Exercise 1.24. Show that if $\lim \inf x_{n}<\lim \sup x_{n}$, then the sequence x_{n} diverges.
Exercise 1.25. Show that $\lim _{n \uparrow \infty} x_{n}=\lim \inf x_{n}=\lim \sup x_{n}$ iff the sequence is converging.
Definition 1.19. A sequence of numbers x_{n} for $n=1,2, \ldots$, is said to be a Cauchy sequence if for every $\epsilon>0$, there is an integer N such that for all $n, m>N,\left|x_{n}-x_{m}\right|<\epsilon$.

Exercise 1.26. Show that if a sequence of real numbers converges then it is a Cauchy sequence.
Exercise 1.27. Show that a Cauchy sequence is bounded.
Exercise 1.28. Show that for a Cauchy sequence $\lim \inf x_{n}=\lim \sup x_{n}$. Therefore a Cauchy sequence of real numbers must converge.
Let x_{n} be a real sequence. Let $S_{N}=\sum_{n=1}^{N} x_{n}$ be the N-th partial sum of the infinite series $\sum_{n=1}^{\infty} x_{n}$. We say that the infinite series converges to s if $\lim _{N \uparrow \infty} S_{N}=s$. We denote this by $\sum_{n=1}^{\infty} x_{n}=s$. Othewise we say that the infinite series diverges.

While this definition seems obvious and well-defined, it is not the case. The following two examples are from Beals.

Example 1.20. The series $\sum_{n=1}^{\infty} n^{-1}$ diverges. To see this observe that

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n} & =1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\ldots \\
& \geqslant \frac{1}{2}+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right)+\ldots \\
& =\frac{1}{2}+\frac{1}{2}+2 \frac{1}{4}+4 \frac{1}{8}+\ldots \\
& =\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\ldots \\
& =\infty
\end{aligned}
$$

Exercise 1.29. Show that if $|x|<1$ then $\sum_{n=0}^{\infty} x^{n}=1 /(1-x)$.
Exercise 1.30. Riemann. Show that the sum $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ can be rearranged to converge to any real number.
This is the reason why convergence as we have defined it for series can be problematic.
Example 1.21. The series $\sum_{n=1}^{\infty} n^{-2}$ converges. To see this observe that

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n^{2}} & =1+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{3}\right)^{2}+\left(\frac{1}{4}\right)^{2}+\left(\frac{1}{5}\right)^{2}+\left(\frac{1}{6}\right)^{2}+\left(\frac{1}{7}\right)^{2}+\left(\frac{1}{8}\right)^{2}+\ldots \\
& \leqslant 1+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{4}\right)^{2}+\left(\frac{1}{4}\right)^{2}+\left(\frac{1}{4}\right)^{2}+\left(\frac{1}{4}\right)^{2}+\ldots \\
& =1+2\left(\frac{1}{2}\right)^{2}+4\left(\frac{1}{4}\right)^{2}+8\left(\frac{1}{8}\right)^{2}+\ldots \\
& =1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \\
& =2
\end{aligned}
$$

Exercise 1.31. Show that if the sum $\sum_{n} x_{n}$ converges then $\lim _{n \uparrow \infty} x_{n}=0$. Hint: The partial sums are a Cauchy sequence. Consider $\left|S_{n}-S_{n+1}\right|$.
Exercise 1.32. Generalize the above two examples to show that if $0 \leqslant a_{n+1} \leqslant a_{n}$, then $\sum a_{n}$ converges iff $\sum 2^{k} a_{2^{k}}$ converges.
Exercise 1.33. Show that $\sum n^{-1}(\log n)^{-2}$ converges while $\sum n^{-1}(\log n)^{-1}$ diverges.
Exercise 1.34. Let $0 \leqslant a_{n+1} \leqslant a_{n}$ and let f be a monotonic non-increasing function such that $f(n)=a_{n}$. Show that $\sum a_{n}$ converges iff $\int_{1}^{\infty} f(x) d x$ converges.
Exercise 1.35. Show that $\sum a_{n}$ converges for $a_{n}=n^{-p}$ if $p>1$ and diverges if $p \leqslant 1$.
Proposition 1.22. Comparison test. Let $\sum_{n} a_{n}$ be a positive converging series. Then if $\left|x_{n}\right| \leqslant a_{n}$, then $\sum_{n} x_{n}$ is also converging.

Proof. Exercise.
Proposition 1.23. Ratio test. (a) If $\lim \sup \left|z_{n+1} / z_{n}\right|<1$ then $\sum z_{n}$ converges. (b) If lim $\inf \left|z_{n+1} / z_{n}\right|>1$ then $\sum z_{n}$ diverges.

Proof. (a). For sufficently large $N\left|z_{n+1} / z_{n}\right| \leqslant r<1$. Exercise. Finish the proof. (b). Observe that z_{n} cannot approach 0 .

Exercise 1.36. Show that $\sum z^{n} / n!$ converges for all values of z.
Definition 1.24. Let S be a subset of \mathbb{R}. A family A_{n} of sets is said to cover S if $S \subset \bigcup_{n} A_{n}$.
Definition 1.25. A subset S of \mathbb{R} is said to be compact if every open cover of S has a finite sub-cover. That is, if the family of open sets A_{n} covers S, then there are sets $A_{n_{1}}, A_{n_{2}}, \ldots, A_{n_{m}}$ such that $S \subset \bigcup_{k=1}^{m} A_{n_{k}}$.

Example 1.26. \mathbb{R} is not compact since the family $A_{n}=(n, n+2)$ has no finite sub-cover.
Example 1.27. The set $(0,1)$ is not compact. The open cover $A_{n}=\left(\frac{1}{n}, 1\right)$ has no finite subcover.

Example 1.28. A finite subset of \mathbb{R} is compact.
Theorem 1.29. Bolzano-Weierstrass. Let x_{n} be a sequence in a closed and bounded subset S of \mathbb{R}. Then there is a sub-sequence of x_{n} that converges to a point in S.

Proof. If there are only finite number of distinct points in x_{n} there is nothing to prove. So assume otherwise. Since S is bounded we can find a closed interval $I_{0}=\left[a_{0}, b_{0}\right]$ that covers S. Since there are infinitely many distinct points in x_{n} one of the two intervals $\left[a_{0}, \frac{a_{0}+b_{0}}{2}\right]$ and $\left[\frac{a_{0}+b_{0}}{2}, b_{0}\right]$ must contain infinitely many points of x_{n}. Call that interval $I_{1}=\left[a_{1}, b_{1}\right]$. Pick a point of the sequence $x_{n_{1}}$ in I_{1} and remove it from further consideration. Proceed thus to construct $I_{k}=\left[a_{k}, b_{k}\right]$ and a correspoding point of the sequence $x_{n_{k}}$ in I_{k}. Note that lim $b_{k}-a_{k}=0$, since the intervals are halved every time and we started with an interval of finite length. Clearly the sequence we constructed is Cauchy. Exercise: finish the proof.

Theorem 1.30. Heine-Borel theorem. A subset of \mathbb{R} is compact iff it is closed and bounded.

Proof. Suppose S is a compact subset. For each $x \in S$ let $A_{x}=B_{1}(x)$. Since this is an open cover of S there is a finite sub-cover from it. From this it follows that S is bounded. Exercise: provide the details.

Let $x \in S^{c}$. For every $y \in S$ there is a ball centered at y that does not include x. These provide an open cover of S. There is a finite sub-cover from these balls none of which intersect x. Hence there is a ball at x that does not intersect the finite sub-cover, and hence does not intersect S. Therefore S^{c} is open.

To prove the converse let S be a closed and bounded subset of \mathbb{R}. Let A_{n} be an open cover of S. For each $x \in A_{n}$ take every ball centered at x that is entirely contained in A_{n}. The set of all such balls forms an open cover of S. Clearly if we can prove that there is a finite sub-cover from this set we can get a corresponding finite sub-cover for A_{n}. So we restrict our attention to these open balls at each $x \in S$. For each $x \in S$ consider the supremum of the radii of all balls centered at x that are in the open cover and pick a ball whose radius is at least half this supremum. Call this ball at x as $B_{r(x)}(x)$. We claim that the infimum of $r(x)$ is strictly greater than 0 . Suppose it is not. Then the infimum is 0 . This implies that there is a sequence in x_{n} with $\lim _{n \uparrow \infty} r\left(x_{n}\right)=0$. Pick a converging sub-sequence of x_{n} and call that as x_{n}. Let $x=$ $\lim _{n \uparrow \infty} x_{n} \in S$. But there is a finite open ball at x in the open cover. Which implies that for every x_{n} in this ball there is a ball of sufficiently large radius. Therefore the infimum cannot be 0 since we tried to pick large enough balls. Therefore for every $x \in S$ we can pick a ball in the open cover whose radius is bigger than some $\delta>0$. Exercise: from this show that we can pick a finite number of open balls to cover S since it is bounded.

Example 1.31. The set $\left\{0,1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$ is compact since it is closed and bounded.
Definition 1.32. A function f from an open subset S of \mathbb{R} to \mathbb{R} is said to be continuous at a point $x \in S$ if for every $\epsilon>0$ there is a $\delta>0$ such that $|f(x)-f(y)|<\epsilon$ for all $y \in B_{\delta}(x)$.

Exercise 1.37. Let x_{n} be a converging sequence in S. Show that if f is continuous at x then $\lim _{n \uparrow \infty} f\left(x_{n}\right)=f\left(\lim _{n \uparrow \infty} x_{n}\right)$.

Definition 1.33. A function is said to be continuous on S if it is continuous at each point of S.

Definition 1.34. A function is said to be uniformly continuous on S if for every $\epsilon>0$ there is a $\delta>0$ such that for all $x, y \in S$ with $|x-y|<\delta$ it is true that $|f(x)-f(y)|<\epsilon$.

Note that δ is not allowed to depend on x.
Exercise 1.38. Show that $\sin (1 / x)$ is not uniformly continuous on $(0,1)$ even though it is continuous at every point on $(0,1)$.

Theorem 1.35. If $f: S \rightarrow \mathbb{R}$ is continuous on a compact set S then f is uniformly continuous on S.

Proof. At each point $x \in S$ pick a suitable a sufficiently small ball so that within that ball the function varies by no more than ϵ. These balls form an open cover. Pick a finite sub-cover and choose the smallest radius of the finite sub-cover as δ.

Theorem 1.36. If f is a continous function on the compact set S then there is a point $x \in S$ such that $f(x)=\sup \{f(y) \mid y \in S\}$.

Proof. First we need to show that f is bounded on S. Suppose not. Then there is a sequence x_{n} in S with $\left|f\left(x_{n}\right)\right|>\frac{1}{n}$. Pick a converging sub-sequence and show that f is not continuous at the limit point.

Let x_{n} be a sequence of points in S such that $\lim f\left(x_{n}\right)=\sup _{S} f$. Then there is a converging sub-sequence of x_{n} in S and the continuity of f proves the theorem.

Theorem 1.37. Intermediate Value Theorem. Let f be continuous on $[a, b]$. Let c be a value between $f(a)$ and $f(b)$. Then there is an $x \in[a, b]$ such that $f(x)=c$.

Proof. Assume wolog that $f(a) \leqslant c \leqslant f(b)$. Using bisection we can find a sequence of nested closed intervals that are shrinking to zero and the function is guaranteed to bracket c in each of these intervals. Now compactness and continuity yield the result. Exercise: fill in the details.

Definition 1.38. A sequence of continuous functions $f_{n}: S \rightarrow \mathbb{R}$ is said to converge uniformly to the function $f: S \rightarrow \mathbb{R}$, if for every $\epsilon>0$ there is a N such that for all $n>N$ and all $x \in S$ $\left|f(x)-f_{n}(x)\right|<\epsilon$.

Theorem 1.39. If the sequence of continuous functions f_{n} on the set S is converging uniformly to the function f, then f is continuous on S.

Proof. Pick n such that $\left|f_{n}(x)-f(x)\right|<\epsilon$ for $x \in S$. Pick δ such that for $|x-y|<\delta, \mid f_{n}(x)-$ $f(y) \mid<\epsilon$. Then

$$
\begin{aligned}
|f(x)-f(y)| & \leqslant\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)-f_{n}(y)\right|+\left|f_{n}(y)-f(y)\right| \\
& \leqslant \epsilon+\epsilon+\epsilon
\end{aligned}
$$

Read up on Riemann integration in the appendix of Stein \& Shakarchi's book. We will use it freely in the sequel.

Proposition 1.40. If f and g are integrable functions on $[a, b]$ and c is a real number then

$$
\int_{a}^{b}(f+c g)=\int_{a}^{b} f+c \int_{a}^{b} g
$$

Theorem 1.41. If f is a continuous function on $[a, b]$ then it is integrable on $[a, b]$.
Proposition 1.42. If f is integrable on $[a, b]$ and $|f(x)| \leqslant M$ on $[a, b]$ then $\left|\int_{a}^{b} f\right| \leqslant M(b-a)$.
Proposition 1.43. If $a<b<c$ then
holds whenever one side holds.

$$
\int_{a}^{c} f=\int_{a}^{b} f+\int_{b}^{c} f
$$

Theorem 1.44. Suppose f_{n} is a sequence of continuous functions that is converging uniformly to f on $[a, b]$, then

$$
\lim _{n \uparrow \infty} \int_{a}^{b} f_{n}=\int_{a}^{b} \lim _{n \uparrow \infty} f_{n}=\int_{a}^{b} f
$$

Proof. f is continuous and hence integrable. Then

$$
\left|\int_{a}^{b} f_{n}-\int_{a}^{b} f\right|=\left|\int_{a}^{b} f_{n}-f\right| \leqslant \sup _{a \leqslant x \leqslant b}\left|f_{n}(x)-f(x)\right||a-b|,
$$

which proves the result.
Definition 1.45. A function f on (a, b) is said to be differentiable at $x \in(a, b)$ if

$$
\lim _{y \rightarrow x} \frac{f(x)-f(y)}{x-y}
$$

exists. The limit is denoted by $f^{\prime}(x)$ and is called the derivative of f at x.
Proposition 1.46. If f is differentiable at x then it is continuous at x.
Theorem 1.47. Mean Value Theorem. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and differentiable on (a, b). Then for some $c \in(a, b)$

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Proof. Consider the function $g(x)=f(x)-\left(f(a) \frac{x-b}{a-b}+f(b) \frac{x-a}{b-a}\right)$. Then $g(a)=g(b)=0$ and $g^{\prime}(x)=f^{\prime}(x)-\frac{f(b)-f(a)}{b-a}$. We just need to show that there is a c for which $g^{\prime}(c)=0$. The candidate points are the points of maxima and minima which are guaranteed to exist. Let c^{*} be a point where g becomes maximum and c_{*} be a point where g becomes minimum. If both c^{*} and c_{*} are end-points then $g=0$ and the proof is done. Wolog let $c^{*} \in(a, b)$. Then $g(x) \leqslant g\left(c^{*}\right)$. It follows that

$$
\frac{g\left(c^{*}\right)-g(x)}{c^{*}-x}
$$

is non-negative if $x<c^{*}$ and non-positive if $x>c^{*}$. It follows that the limit must be $0=$ $g^{\prime}\left(c^{*}\right)$.

