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Chapter 1

Basic real analysis

A good reference for this chapter is the book Advanced Mathematical Analysis by Richard Beals.
We will denote the set of real numbers by R. We will assume that the basic properties of the

real numbers are obvious. The one non-obvious property we will assume as an axiom.

Definition 1.1. A number M is said to be an upper bound for a subset S of R if s 6 M for
all s∈S.

Axiom 1.2. If S is a subset of R with a finite upper bound, then there exists a number lub(S),
called the least upper bound of S, which is an upper bound of S that is less than every other
upper bound of S.

Exercise 1.1. Show that for every ǫ > 0 there is an x∈S such that x > lub(S)− ǫ.

Exercise 1.2. Give an example of a bounded subset of the rational numbers that has no greatest lower

bound.

Definition 1.3. A number L is said to be a lower bound for a subset S of R if s > L for all
s∈S.

Lemma 1.4. If S is a subset of R with a finite lower bound, then there exists a number glb(S),
called the greatest lower bound of S, which is a lower bound of S that is greater than every
other lower bound of S.

Proof. Exercise. Hint : Apply axiom 1.2 to −S. �

Notation 1.5. The least upper bound of S is also called the supremum of S and denoted by
sup (S). Similarly the greatest lower bound of S is also called the infimum of S and denoted by
inf (S).

Exercise 1.3. Show that inf (S) 6sup (S).

Definition 1.6. Let a < b. Then the subset {x |a < x < b} of R is called an open interval and
denoted by (a, b).

Definition 1.7. An open ball centered at a of radius r is the open interval (a − r, a + r) and
is denoted by Br(a).

Definition 1.8. A neighborhood of a point is an open ball centered at that point.

Definition 1.9. A subset S of R is said to be open if every point in S has a neighborhood that
is contained in S. The empty set is assumed to be open.

Exercise 1.4. Show that an open interval is an open set.

Proposition 1.10. The (possibly infinite) union of open sets is open.

Proof. Exercise. �

Proposition 1.11. The finite intersection of open sets is open.

Proof. Exercise. �
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Definition 1.12. A point x is said to be a limit point of a subset S if every neighborhood of x

also contains a point of S other than x itself.

Exercise 1.5. Show that a and b are limit points of the open interval (a.b).

Definition 1.13. Let a 6 b. Then the subset {x |a 6 x 6 b} of R is called a closed interval

and denoted by [a, b].

Definition 1.14. A subset of R is said to be closed if it contains all its limit points. The
empty set is assumed to be closed.

Exercise 1.6. Let −∞< a < b <∞. Show that [a, b] is a closed set.

Exercise 1.7. Show that a finite subset of R has no limit points. Thus they are closed (vacuously).

Exercise 1.8. Show that if x � S is not a limit point of S then there is a neighborhood of x that does not

intersect S.

Exercise 1.9. Show that the finite union of closed sets is a closed set. Hint : Show that if x is not in the

union then it has a ball, one for each closed set, that does not intersect that closed set. The intersection of

these balls gives a non-intersecting ball. Thus the union is not missing a limit point.

Exercise 1.10. Show that the (possibly infinite) intersection of closed sets is a closed set.

Notation 1.15. If S is a subset let Sc = {x |x � S} denote the complement of S.

Exercise 1.11. Show that
(

⋃

n
Sn

)c
=

⋂

n
Sn

c , where Sn is a set. The number of sets can be infinite.

Exercise 1.12. Show that an open set can be written as the (possibly infinite) union of open intervals.

Proposition 1.16. A subset is open iff its complement is closed.

Proof. Exercise. �

Definition 1.17. A sequence of numbers xn for n = 1, 2, � , is said to have a limit x, if for
every ǫ > 0 there exists an N such that for all n > N, |xn − x| < ǫ. We denote this by
limn↑∞ xn = x, and say that the sequence xn converges to x. If such an x does not exist we say
that the sequence xn diverges.

Exercise 1.13. Show that the sequence xn =n for n = 1, 2,� , diverges.

Exercise 1.14. Show that the sequence xn =(−1)n for n = 1, 2,� , diverges.

Exercise 1.15. Show that the limit of a sequence is unique if it exists.

Exercise 1.16. Show that a convergent sequence is bounded.

Exercise 1.17. Let xn be a bounded sequence of non-decreasing real numbers; that is, there is an M < ∞

such that |xn| < M , and xn 6 xn+1. Show that limn↑∞ xn exists. Hint : Look at the supremum of the set

{xn}.

Exercise 1.18. Show that if a > 0 then limn↑∞ a1/n = 1. Hint : If a < 1 then this is an increasing sequence.

Exercise 1.19. Show that limn↑∞ n1/n = 1. Hint : Let n1/n = 1 + xn. Then by the binomial expansion n >

1+ n xn +
1

2
n(n − 1)xn

2 >
1

2
n(n − 1)xn

2 .

Let xn be a bounded real sequence and define AN = {xn |n > N }, lN = inf (AN) and uN = sup
(AN).

Exercise 1.20. Show that lN is a bounded non-decreasing sequence and uN is a bounded non-increasing

sequence. Therefore both limN↑∞ lN and limN↑∞ uN exist.

Exercise 1.21. Let x1 = −1, x2 = 4 and xn = n mod 4 for n = 3, 4, � . Find limN↑∞ lN and limN↑∞ uN for

this sequence.

Definition 1.18. Let xn be a bounded real sequence. We call limN↑∞ lN as the lower limit of
the sequence xn and denote it by lim inf xn. We call limN↑∞ uN as the upper limit of the
sequence xn and denote it by lim supxn.

Exercise 1.22. Show that lN 6uM.

Exercise 1.23. Show that lim inf xn 6 lim sup xn.
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Exercise 1.24. Show that if lim inf xn < lim sup xn, then the sequence xn diverges.

Exercise 1.25. Show that limn↑∞ xn = lim inf xn = lim sup xn iff the sequence is converging.

Definition 1.19. A sequence of numbers xn for n = 1, 2, � , is said to be a Cauchy sequence

if for every ǫ > 0, there is an integer N such that for all n, m > N, |xn − xm|< ǫ.

Exercise 1.26. Show that if a sequence of real numbers converges then it is a Cauchy sequence.

Exercise 1.27. Show that a Cauchy sequence is bounded.

Exercise 1.28. Show that for a Cauchy sequence lim inf xn = lim sup xn. Therefore a Cauchy sequence of

real numbers must converge.

Let xn be a real sequence. Let SN =
∑

n=1
N

xn be the N -th partial sum of the infinite series
∑

n=1
∞

xn. We say that the infinite series converges to s if limN↑∞ SN = s. We denote this by
∑

n=1
∞

xn = s. Othewise we say that the infinite series diverges.

While this definition seems obvious and well-defined, it is not the case. The following two
examples are from Beals.

Example 1.20. The series
∑

n=1
∞

n−1 diverges. To see this observe that

∑

n=1

∞
1

n
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+�

>
1

2
+

1

2
+

(

1

4
+

1

4

)

+

(

1

8
+

1

8
+

1

8
+

1

8

)

+�
=

1

2
+

1

2
+ 2

1

4
+ 4

1

8
+�

=
1

2
+

1

2
+

1

2
+

1

2
+�

= ∞.

Exercise 1.29. Show that if |x|< 1 then
∑

n=0
∞

xn =1/(1− x).

Exercise 1.30. Riemann. Show that the sum
∑

n=1
∞ (−1)n

n
can be rearranged to converge to any real

number.

This is the reason why convergence as we have defined it for series can be problematic.

Example 1.21. The series
∑

n=1
∞

n−2 converges. To see this observe that

∑

n=1

∞
1

n2
= 1+

(

1

2

)2

+

(

1

3

)2

+

(

1

4

)2

+

(

1

5

)2

+

(

1

6

)2

+

(

1

7

)2

+

(

1

8

)2

+�
6 1+

(

1

2

)2

+

(

1

2

)2

+

(

1

4

)2

+

(

1

4

)2

+

(

1

4

)2

+

(

1

4

)2

+�
= 1+ 2

(

1

2

)2

+ 4

(

1

4

)2

+ 8

(

1

8

)2

+�
= 1+

1

2
+

1

4
+

1

8
+�

= 2.

Exercise 1.31. Show that if the sum
∑

n
xn converges then limn↑∞ xn = 0. Hint : The partial sums are a

Cauchy sequence. Consider |Sn −Sn+1|.

Exercise 1.32. Generalize the above two examples to show that if 0 6 an+1 6 an, then
∑

an converges iff
∑

2ka2k converges.

Exercise 1.33. Show that
∑

n−1(log n)−2 converges while
∑

n−1(log n)−1 diverges.

Exercise 1.34. Let 0 6 an+1 6 an and let f be a monotonic non-increasing function such that f(n) = an.

Show that
∑

an converges iff
∫

1
∞

f(x)dx converges.

Exercise 1.35. Show that
∑

an converges for an = n−p if p > 1 and diverges if p 61.

Proposition 1.22. Comparison test. Let
∑

n
an be a positive converging series. Then if

|xn|6 an, then
∑

n
xn is also converging.
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Proof. Exercise. �

Proposition 1.23. Ratio test. (a) If lim sup |zn+1/zn| < 1 then
∑

zn converges. (b) If lim
inf |zn+1/zn|> 1 then

∑

zn diverges.

Proof. (a). For sufficently large N |zn+1/zn| 6 r < 1. Exercise. Finish the proof. (b). Observe
that zn cannot approach 0. �

Exercise 1.36. Show that
∑

zn/n! converges for all values of z.

Definition 1.24. Let S be a subset of R. A family An of sets is said to cover S if S ⊂
⋃

n
An.

Definition 1.25. A subset S of R is said to be compact if every open cover of S has a finite
sub-cover. That is, if the family of open sets An covers S, then there are sets An1

, An2
, � , Anm

such that S ⊂
⋃

k=1
m

Ank
.

Example 1.26. R is not compact since the family An = (n, n + 2) has no finite sub-cover.

Example 1.27. The set (0, 1) is not compact. The open cover An =
(

1

n
, 1

)

has no finite sub-

cover.

Example 1.28. A finite subset of R is compact.

Theorem 1.29. Bolzano-Weierstrass. Let xn be a sequence in a closed and bounded subset S

of R. Then there is a sub-sequence of xn that converges to a point in S.

Proof. If there are only finite number of distinct points in xn there is nothing to prove. So
assume otherwise. Since S is bounded we can find a closed interval I0 = [a0, b0] that covers S.
Since there are infinitely many distinct points in xn one of the two intervals [a0,

a0 + b0

2
] and

[
a0 + b0

2
, b0] must contain infinitely many points of xn. Call that interval I1 = [a1, b1]. Pick a point

of the sequence xn1
in I1 and remove it from further consideration. Proceed thus to construct

Ik = [ak, bk] and a correspoding point of the sequence xnk
in Ik. Note that lim bk − ak = 0, since

the intervals are halved every time and we started with an interval of finite length. Clearly the
sequence we constructed is Cauchy. Exercise: finish the proof. �

Theorem 1.30. Heine-Borel theorem. A subset of R is compact iff it is closed and
bounded.

Proof. Suppose S is a compact subset. For each x ∈ S let Ax = B1(x). Since this is an open
cover of S there is a finite sub-cover from it. From this it follows that S is bounded. Exercise:
provide the details.

Let x ∈ Sc. For every y ∈ S there is a ball centered at y that does not include x. These
provide an open cover of S. There is a finite sub-cover from these balls none of which intersect
x. Hence there is a ball at x that does not intersect the finite sub-cover, and hence does not
intersect S. Therefore Sc is open.

To prove the converse let S be a closed and bounded subset of R. Let An be an open cover
of S. For each x ∈ An take every ball centered at x that is entirely contained in An. The set of
all such balls forms an open cover of S. Clearly if we can prove that there is a finite sub-cover
from this set we can get a corresponding finite sub-cover for An. So we restrict our attention to
these open balls at each x ∈ S. For each x ∈ S consider the supremum of the radii of all balls
centered at x that are in the open cover and pick a ball whose radius is at least half this
supremum. Call this ball at x as Br(x)(x). We claim that the infimum of r(x) is strictly greater

than 0. Suppose it is not. Then the infimum is 0. This implies that there is a sequence in xn

with limn↑∞ r(xn) = 0. Pick a converging sub-sequence of xn and call that as xn. Let x =
limn↑∞ xn ∈ S. But there is a finite open ball at x in the open cover. Which implies that for
every xn in this ball there is a ball of sufficiently large radius. Therefore the infimum cannot be
0 since we tried to pick large enough balls. Therefore for every x ∈ S we can pick a ball in the
open cover whose radius is bigger than some δ > 0. Exercise: from this show that we can pick a
finite number of open balls to cover S since it is bounded. �
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Example 1.31. The set
{

0, 1,
1

2
,

1

3
,

1

4
,�}

is compact since it is closed and bounded.

Definition 1.32. A function f from an open subset S of R to R is said to be continuous at

a point x∈S if for every ǫ > 0 there is a δ > 0 such that |f(x)− f(y)|< ǫ for all y ∈Bδ(x).

Exercise 1.37. Let xn be a converging sequence in S. Show that if f is continuous at x then

limn↑∞ f(xn)= f(limn↑∞ xn).

Definition 1.33. A function is said to be continuous on S if it is continuous at each point of
S.

Definition 1.34. A function is said to be uniformly continuous on S if for every ǫ > 0 there
is a δ > 0 such that for all x, y ∈S with |x− y |< δ it is true that |f(x)− f(y)|< ǫ.

Note that δ is not allowed to depend on x.

Exercise 1.38. Show that sin(1/x) is not uniformly continuous on (0, 1) even though it is continuous at

every point on (0, 1).

Theorem 1.35. If f : S → R is continuous on a compact set S then f is uniformly continuous
on S.

Proof. At each point x ∈ S pick a suitable a sufficiently small ball so that within that ball the
function varies by no more than ǫ. These balls form an open cover. Pick a finite sub-cover and
choose the smallest radius of the finite sub-cover as δ. �

Theorem 1.36. If f is a continous function on the compact set S then there is a point x ∈ S

such that f(x)= sup {f(y)|y ∈S}.

Proof. First we need to show that f is bounded on S. Suppose not. Then there is a sequence
xn in S with |f(xn)| >

1

n
. Pick a converging sub-sequence and show that f is not continuous at

the limit point.
Let xn be a sequence of points in S such that lim f(xn) = supS f . Then there is a converging

sub-sequence of xn in S and the continuity of f proves the theorem. �

Theorem 1.37. Intermediate Value Theorem. Let f be continuous on [a, b]. Let c be a
value between f(a) and f(b). Then there is an x∈ [a, b] such that f(x)= c.

Proof. Assume wolog that f(a) 6 c 6 f(b). Using bisection we can find a sequence of nested
closed intervals that are shrinking to zero and the function is guaranteed to bracket c in each of
these intervals. Now compactness and continuity yield the result. Exercise: fill in the details. �

Definition 1.38. A sequence of continuous functions fn: S→R is said to converge uniformly to
the function f : S → R, if for every ǫ > 0 there is a N such that for all n > N and all x ∈ S

|f(x)− fn(x)|<ǫ.

Theorem 1.39. If the sequence of continuous functions fn on the set S is converging uniformly
to the function f, then f is continuous on S.

Proof. Pick n such that |fn(x) − f(x)| < ǫ for x ∈ S. Pick δ such that for |x − y | < δ, |fn(x) −
f(y)|<ǫ. Then

|f(x)− f(y)| 6 |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|

6 ǫ + ǫ + ǫ.

�

Read up on Riemann integration in the appendix of Stein & Shakarchi’s book. We will use it
freely in the sequel.
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Proposition 1.40. If f and g are integrable functions on [a, b] and c is a real number then

∫

a

b

(f + c g)=

∫

a

b

f + c

∫

a

b

g.

Theorem 1.41. If f is a continuous function on [a, b] then it is integrable on [a, b].

Proposition 1.42. If f is integrable on [a, b] and |f(x)|6 M on [a, b] then
∣

∣

∣

∫

a

b
f
∣

∣

∣
6 M(b− a).

Proposition 1.43. If a < b < c then
∫

a

c

f =

∫

a

b

f +

∫

b

c

f

holds whenever one side holds.

Theorem 1.44. Suppose fn is a sequence of continuous functions that is converging uniformly
to f on [a, b], then

lim
n↑∞

∫

a

b

fn =

∫

a

b

lim
n↑∞

fn =

∫

a

b

f.

Proof. f is continuous and hence integrable. Then
∣

∣

∣

∣

∣

∫

a

b

fn−

∫

a

b

f

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

a

b

fn− f

∣

∣

∣

∣

∣

6 sup
a6x6b

|fn(x)− f(x)| |a− b|,

which proves the result. �

Definition 1.45. A function f on (a, b) is said to be differentiable at x∈ (a, b) if

lim
y→x

f(x)− f(y)

x− y

exists. The limit is denoted by f ′(x) and is called the derivative of f at x.

Proposition 1.46. If f is differentiable at x then it is continuous at x.

Theorem 1.47. Mean Value Theorem. Let f : [a, b] →R be continuous and differentiable on
(a, b). Then for some c∈ (a, b)

f ′(c) =
f(b)− f(a)

b− a
.

Proof. Consider the function g(x) = f(x) −
(

f(a)
x − b

a − b
+ f(b)

x − a

b − a

)

. Then g(a) = g(b) = 0 and

g ′(x) = f ′(x) −
f(b)− f(a)

b − a
. We just need to show that there is a c for which g ′(c) = 0. The candi-

date points are the points of maxima and minima which are guaranteed to exist. Let c∗ be a
point where g becomes maximum and c∗ be a point where g becomes minimum. If both c∗ and
c∗ are end-points then g = 0 and the proof is done. Wolog let c∗ ∈ (a, b). Then g(x) 6 g(c∗). It
follows that

g(c∗)− g(x)

c∗− x

is non-negative if x < c∗ and non-positive if x > c∗. It follows that the limit must be 0 =
g ′(c∗). �
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