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Abstract—A mathematical model for terrestrial running is presented, based on a leg with the properties of a
simple spring. Experimental force—platform evidence is reviewed justifying the formulation of the model:
The governing differential equations are given in dimensionless form to make the results representative of
animals of all body sizes. The dimensionless input parameters are: U, a horizontal Froude number based on
forward speed and leg length; ¥, a vertical Froude number based on vertical landing velocity and leg length,
and K, pg, a dimensionless stiffness for the leg-spring. Results show that at high forward speed, K,z is a
nearly linear function of both U and V¥, while the effective vertical stiffness is a quadratic function of U. For
each U, V pair, the simulation shows that the vertical force at mid-step may be minimized by the choice of a
particular step length. A particularly useful specification of the theory occurs when both K, g and V are
assumed fixed. When K, ;=15 and ¥'=0.18, the model makes predictions of relative stride length S and
initial leg angle 8, that are in good agreement with experimental data obtained from the literature.

NOMENCLATURE

Dimensional variables

Jinax maximum vertical force
e horizontal force on mass
5 vertical force on mass
kyeg spring stiffness of leg
vert effective vertical stiffness (same as k., in the case

of vertical hopping; otherwise different)
instantaneous length of leg [Fig. 2(b)]

Iy starting and ending leg length

m body mass

s stride length, distance between footprints of
same foot

2l, sin 8, step length, distance moved during one contact
period

t, time in air

t, time of contact

u horizontal velocity at beginning of contact

-v vertical velocity at beginning of contact
horizontal coordinate of body mass [Fig. 2(b})]
vertical coordinate of body mass [Figs 2(a) and

()]

o

Dimensionless variables

A, =, /mg—1
Kigg= kle;lo/’"g
KVERT =kveﬂ lo/”‘g

dimensionless vertical acceleration
dimensionless leg stiffness

dimensionless vertical stiffness

L=l1/l, dimensionless leg length
S=s/ly relative stride length
U=u/(gly)*? horizontal Froude number
V=0/(gly)'? vertical Froude number

vwo/g =K%V  Groucho number

INTRODUCTION

This paper presents a simple yet comprehensive
theory for running in terrestrial animals. We first
review experimental evidence justifying our main as-
sumption, that the leg is a spring. Then we give a series
of results predicting important parameters such as the

peak ground reaction force and the stride length.
Finally, we compare these predictions with published
experiments. We seek the simplest model of running
capable of explaining how the stiffness of the leg spring
couples with speed. Before beginning, however, it is
useful to ask an even more basic question: what
distinguishes walking and running?

At first glance, the difference between walking and
running in terrestrial animals would appear obvious.
In running, all feet are in the air at some point in the
gait cycle, whereas in walking there is always at least
one foot on the ground. This distinction is appropriate
most of the time for most animals, but there are times
when it fails. When humans run along a circular path,
the aerial phase of the motion disappears if the turn
has a sufficiently small radius (Greene and McMahon,
1979a). When humans run on a treadmill at constant
speed but deliberately bend their knees more than
usual in order to decrease the vertical stiffness of the
legs and body, again the aerial phase is found to
disappear when the extra knee flexion is great enough
(McMahon et al., 1987).

A better criterion for distinguishing between walk-
ing and running is the one put forward by Cavagna
et al. (1976). On the basis of observations in humans,
they pointed out that in walking, the center of mass is
highest in mid-step, when the hip of the stance leg
passes over the ankle. In running, by comparison, the
center of mass is lowest at mid-step. Thus in walking,
but not in running, gravitational potential energy is
stored in the first half of the walking step as the center
of mass rises, and returned in the form of kinetic
energy during the second half of the step as the center
of mass falls.

Cavagna et al. (1976) emphasized that in running,
changes of forward kinetic energy and gravitational
potential energy are in phase and therefore cannot
exchange with one another to smooth out fluctuations
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of total mechanical energy over a step. They pointed
out, however, that energy can still be stored at mid-
step in an elastic form within stretched tendons,
muscles, and perhaps bent bones. These general fea-
tures of walking and running were later recognized in
the gaits of birds and quadrupedal mammals as well as
humans (Cavagna et al., 1977).

In this paper, our most important goal is to under-
stand the quantitative rules that couple leg-spring
stiffness, gravity, and forward speed in running. We
also wish to know the relationship between the leg-
spring stiffness and the equivalent vertical stifiness, a
parameter that is easy to measure in running animals.
In order to make the results of the paper valid for
animals of all body size, the model is formulated in
terms of dimensionless variables.

METHODS

Justification of the model

In Fig. 1, reproduced from Cavagna et al. (1988), the
spring-like properties of the limbs in running are
illustrated for a dog trotting, a man running, and a
kangaroo hopping. These records, obtained as each
animal ran at constant speed over a force platform,
show that the vertical acceleration (and thus the
vertical force) increases as the vertical displacement of
the center of mass decreases during the period of
contact. Furthermore, the portions of the curves
showing loading of a hypothetical spring (leftward
arrow) and unloading (rightward arrow) nearly coin-
cide, at least for the dog and the kangaroo, supporting

: TROT (Dog, 6.8 km h-1)
1
OPY; Vertical displacement (cm)
-1

RUN (Man, 18.0 km h-1)

Ay = fy/mg -1
N

L Vertical

RN et 1p displacement (cm)

HOP (Kangaroo, 21.1 km h-1)

Vertical acceleration

0 + + +——t A + ~ (cm)

4L 2 \‘%‘ 10 14

Fig. 1. Vertical acceleration vs vertical displacement for a
5 kg dog trotting, a 72 kg man running, and a 21 kg kan-

garoo hopping across a force platform at the steady speeds
shown. From Cavagna et al. (1988).

the idea that the same undamped spring can describe
the stifiness of a running animal during the entire
contact period.

As a model of an animal hopping in place, imagine
that the leg is a linear spring and the body mass falls
on it with a certain downward vertical velocity. Pro-
vided that the spring is undamped, the vertical velocity
is reversed during the collision. The stiffer the spring,
the shorter the contact time and the higher the peak
vertical force. Now let the animal tun forward. A
steady running cycle will be obtained if in each
collision with the ground the forward speed is the
same at the beginning and the end of the step. During
the collision, the vertical velocity is reversed-and the
magnitude of the angle between the leg and the
vertical is the same at the end of the step as it was at
the beginning. For a given set of values for the body
mass, the (unloaded) leg length, the horizontal and
vertical landing velocities, the initial angle of the leg,
and gravity, only one particular value of the spring
constant for the leg-spring will do. If the leg-spring is
too hard, the body will fly upward too soon, and if the
leg-spring is too soft, the body will rise too late.

In the following sections, two alternative schemes
are considered for putting the problem of the rebound
of a mass from a spring in dimensionless terms. The
first applies to hopping in place, the second to forward
running.

Formulation of the model

Hopping in place. Figure 2(a) shows a mass-spring
system constrained to move vertically as it strikes the
ground. For reasons which will become clear later in
the paper, we label the stiffness of the leg-spring k...
For vertical hopping, the terms k,, and k., are

=

kvert

(b) >

Fig. 2. Schematic diagrams showing (a) hopping in place,
with no forward motion; and (b) hopping or running forward.
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identical and may be used interchangeably. The dis-
placement y of the mass is measured such that y is
increasing when the mass is moving upward. The
spring is slack, neither stretched nor compressed,
when y=0. The vertical velocity dy/dt of the mass at
the moment the leg-spring strikes the ground is —uv,
where v is a positive quantity. When y is made di-
mensionless by multiplying by k,.,/mg (where m is the
mass, and g is the acceleration due to gravity) and
when time is made dimensionless by multiplying
by wo=(kyen/m)''?, the equation of motion takes a
particularly simple form. As shown in Appendix A, all
the important performance measures, including the
peak force the leg must bear, the time the leg spends in
contact with the ground, and the stride frequency,
depend on only one dimensionless group, vw,/g. In a
previous paper, where subjects changed the stiffness of
their legs by running with their knees bent more than
usual, the group vwy/g was called the ‘Groucho
number’ (McMahon et al., 1987).

Including the forward motion. Several new variables
enter the problem when the mass-spring model is
extended to include forward motion. Suppose, as is
shown in Fig. 2(b), the initial (zero-force) length of the
legis ly and it has a stiffness of k. In this formulation,
y still measures the vertical height of the mass, but now
y=0 corresponds to the ground plane.

At the beginning of the rebound, the forward velo-
city dx/dt of the mass is u and the vertical velocity
dy/dt is —v. During the rebound, we assume that the
angle of the leg with respect to the vertical begins at
— 0, and ends at + 8,. The x-velocity begins and ends
with the value u, and the y-velocity is reversed by the
step, starting with the value —v and ending with +v.

In Appendix B, the equations of motion and the
initial and final conditions are given in a particular
dimensionless form. Lengths have been normalized
with respect to I, and time has been made dimen-
sionless by multiplying by the group (g/l,)'/?, which
happens to be the (small-amplitude) frequency of a
pendulum made by hanging the mass from the (un-
stretched) leg. As a consequence of substituting the
assumed normalizations for length and time into the
conditions on the initial and final velocities, an inter-
esting thing happens [equations (B9)—(B11)]: the ini-
tial and final velocities are divided by a reference
velocity (gly)'/?. This reference velocity has a simple
meaning. An inverted pendulum of length /, swinging
through the top of its arc would fly off the ground if the
speed of its mass were greater than (gl,)'/% In fluid
mechanics, a velocity made dimensionless by the
factor (acceleration of gravity x length)!/2 is called a
Froude number (although some authors define v?/gl,
as the Froude number).

Turning to equations (B1) and (B2), it is appar-
ent that a single dimensionless parameter K pq
=k,.4lo/mg appears in the equations determining the
motion of the mass after the initial moment. One way
to interpret this ratio is to notice that the product

kiglo is the greatest force that the leg-spring can
develop, i.e. the force in the spring when it has been
compressed as far as it can go. Therefore, if the
parameter k. lo/mg<1.0, the leg-spring cannot de-
velop a force equal to the weight. If k, [, /mg < 1.0, the
mass follows a ballistic trajectory, one determined by
the initial velocities and gravity only, after the initial
moment. Another way to view the parameter
kieglo/mg is to recognize that it is the square of the
ratio of the natural frequency of the mass-spring
system to the natural frequency of the leg as a
pendulum.

The different definition for y and the choices for
reference lengths and times in Fig. 2(b) as opposed to
2(a) were made for clarity in the forms of the resulting
dimensionless equations. As must be true,
equation (B2) becomes equation (A1) in the limit of
=0, employing definitions (A2), (A3), (B3) and (B4).
Furthermore, in the limit of =0, one equation disap-
pears (B1), one dimensionless group disappears (U
=0), and the solution depends only on the Groucho
number vw,/g=K ¥ V.

Numerical methods

Because equations (B1) and (B2) are nonlinear, they
must be solved subject to the conditions (B6)—-(B11)
using numerical integration procedures. The equa-
tions and their initial and final conditions constitute
a two-point boundary value problem that was solved
using a shooting method.

A fourth order Runge—Kutta algorithm was em-
ployed to integrate (B1) and (B2) forward in time steps
of 5x107% dimensionless units [defined in
equation (B4)]. Halving the time step produced no
change in the results for a trajectory (to four significant
places). Beginning with specified values for U
=u/(gly)"'? V=v/(gly)"? and 6,, plus an initial
choice for K,z =k,..lo/mg, the equations were integ-
rated forward in time as the leg compressed and
re-extended until it returned back to full extension (L
=]/ly=1.0). If the final leg angle was greater than 6,,
the procedure was repeated using a higher value for
K, gg; if the final angle was less than 6,, the next
approximation for K;g; was smaller. The secant
iteration technique (Press et al., 1986) was used to
estimate a new value for K;gs. Iteration was dis-
continued and the solution accepted when the final
angle for a trajectory was within 10~ 4 radians of the
magnitude of the starting angle and the final values for
L, U, and ¥V were within one-hundredth of one per cent
of the target end conditions.

RESULTS

Trajectories and forces

Results for a typical simulation of running are
shown in Fig. 3. The solid curves show results from
the model when the input parameters were chosen
to represent a man of average size (mass=72kg,
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leg length=1.0m) running at a moderate speed
(18.0 kmh ™!, between 5 and 6 min per mile). It is clear
from Fig. 3(a) that the body mass reaches its lowest
point midway through the step. The trajectory is
rather flat; the body is only 6.24 cm lower in the
middle of the step than it is at the beginning or the end.
The vertical force reaches a maximum of 2.86 times
body weight [Fig. 3(b)], while the peak negative and
positive values of horizontal force are 0.554 times
body weight [Fig. 3(c)].

In order to demonstrate the effect of changing just
one input parameter, the broken curves in Fig. 3 show
how the results are altered when the vertical landing

velocity is reduced by about 60 % while leaving the -

initial horizontal velocity and leg angle unchanged.
The required leg-spring stiffness K g declines from
15.5 to 13.6, the trajectory is flatter, the peak hori-
zontal and vertical forces are smaller, and the dimen-
sionless time occupied by the contact period increases.

Required leg stiffness

Following the example above, we systematically
changed the input parameters, one at a time, covering
the entire range of parameter space we judged relevant
to vertebrate terrestrial locomotion. Results for the
required leg-spring stiffness K, g are shown in Fig. 4.
In part (a), K;gs is plotted vs the dimensionless
vertical velocity V, and it is apparent that K, g
increases approximately linearly with V for the values
of U investigated. Furthermore, as shown in part (b),
K, rg increases linearly with U in the range from U=2
to 10. The linear behavior continues in the range from
U =10 to 30, although apparently this does not corres-
pond to a range used by animals, and therefore does
not appear in the plot. As shown in part (c), Kigg
declines with increasing initial leg angle for all values
of U.

Peak vertical force

The dimensionless maximum vertical force £,,./mg,
which occurs in the middle of the contact period, is
plotted as a function of the input parameters in Fig. 5.
This peak force rises linearly with ¥V and U [Fig. 5(a)],
but is a nonlinear function of 6, [Fig. 5(b)]. As shown
in Fig. 5(b), there is a particular value of 8, (a different
value of 6, for each combination of ¥ and U) at which
Jfnax/Mg is a minimum. The value of 6, that minimizes
Jmax/mg is plotted as a function of U in Fig. 5(c) for
several values of V.

Since the force is maximum at the same moment
that the length of the leg reaches a minimum (at mid-
step), the height of the mass may be calculated at mid-
step from

Lmin =(l/lo)min= 1 —'(fmnx/mg)/KLEG' (1)

Using this calculation and the beginning and end
conditions, L=1 at 8= —6, and =40, it is possible
to ‘fair in’ a curve between the three points, giving a
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Fig. 3. Results when the input parameters represent the man
running at 18.0kmh~! (U=1.6, ¥=0.245, 6,=0.50), con-
trasting the outcomes for two different dimensionless vertical
velocities, ¥=0.245 and ¥=0.1. (a) Trajectory of the mass;
(b) dimensionless vertical force f,/mg vs dimensionless time
wyt; (c) dimensionless horizontal force f,/mg vs wol.
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reasonable approximation of the trajectory followed
~ by the mass during contact.

Vertical force vs displacement curves

A particularly useful set of resuits from the model
is shown in Fig. 6, where the normalized vertical
acceleration of the mass A4,=f,/mg—1 is plotted
against the vertical displacement Ay. The three parts
of the figure, which are to be compared with the
experimental records in Fig. 1, show simulations of:
(a) a5.0kgdogtrottingat 6.8 kmh™!;(b) a 72 kg man
running at 180kmh~*; and (c) a 21 kg kangaroo
hopping at 21.1 kmh~!. The values assumed for the
leg length and the input parameters U, V, and 8, for
each simulation are given in Table 1.

The following procedure was used to obtain the best
simulation of each experimental situation. Firstly, the
change in vertical displacement of the center of mass
during the aerial phase was read from Fig. 1, and the
vertical landing velocity was calculated. From the leg
length, U and ¥ could now be fixed. Assuming that the
step length was approximately equal to the leg length,
a trial value could be obtained for 6,. Iterations were
performed on 6, until the peak value for f,/mg and the
change in vertical displacement during the contact
period came close to the experimental values available
from Fig. 1.

Vertical stiffness

In Fig. 6, the portions of the curves corresponding
to the contact period are generally linear (although the
one simulating the man is straighter than those for the
dog and kangaroo). From Fig. 6(b) (for the man) it is
reasonable to propose an ‘effective vertical stiffness’, or
just ‘vertical stiffness’. One way to estimate the vertical
stiffness is to divide the peak change in vertical force
by the change in vertical displacement during contact
(alternative methods will be mentioned in the Discus-
sion section). Using this method, the dimensionless
vertical stiffness may be calculated from

Kygrr=Kyenlo/mg= (A);/A}’) lo/mg. (2)

When this is done for Fig. 6(b), the result is Kyggpr
=45.86. Both Kygry and the actual normalized stiff-
ness of the leg-spring K, ;. are plotted as a function of
U in Fig. 7(a). It is clear that K gz, is greater than
K, - For example, at U= 1.6, corresponding to the
man running at 18.0kmh~!, the ratio Kygrr/Kisc
=45.86/15.49 =2.96. At higher values of U, Kygt can
be 5 or even 10 times greater than K, .

Another difference between Kypgr and K gg 15
shown in parts (a) and (b) of Fig. 7. In Fig. 7(a), it is
clear (as it was in Fig. 4(b), showing results from other
simulations) that the required K, s for a re-entrant
running cycle increases linearly with U for values of U
greater than about 2.0. By comparison, Kyggy in-
creases quadratically with U for values of U above
about 2.0. This is demonstrated in Fig. 7(b), where a
plot of Kygey vs U? follows an approximately straight
line for values of U2 greater than about 4.0.

Ay
(Dog trotting)
-2 L
0 1 2
Vertical displacement (cm)
(a)
Ay
(Man running)
-2 " —— —
0 2 4 6 8 10
Vertical displacement (cm)
(b)
U =266
V = .565
eus .9
(Kangaroo hopping)
A

[¢] 2 4 6 8 10 12 14 16

Vertical displacement (cm)
(c)

Fig. 6. Simulations of the running and hopping steps in
Fig. 1, showing the results (solid curves) for the dimensionless
vertical acceleration 4 =(f,/mg—1) vs vertical displacement
for (a) the dog trotting; (b) the man running; (c) the kan-
garoo hopping. All input parameters for these simulations
are summarized in Table 1. The broken curves show the
experimental results from Fig. 1, for comparison.
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Table 1.
Animal mass (kg) Iy(m) u(kmh~1) U 14 0,
Dog 5.0 0.23 6.8 1.26 0.050 0.65
Man 72.0 1.00 18.0 1.60 0.245 0.50
Kangaroo 210 0.50 21.1 2.66 0.565 0.90
400 - —-— 6.0
350t y 55}
300 . V=245 5.o£
6 = .5
250+
VERT aote 45(
K 2oof
a0f
150} :
ast
100} ]
3.0
sof (5G] 0
(a) V (vertical)
0
@ ©° 5 6.0 [T —————————————
400
350
300
al)tt_:
250
200
Kverr
150t
100
a, e et et
_ 00 1 2 3 4 5 6 7 8 9 10
S0 ®) U (horizontal)
. .
(o) 6.0 e ————r—
U2
Fig. 7. Contrasting Kyggr and K gg. (a) Kyggr and K gg vs 55
U for the parameters representing the man; (b) Kyggr vs U2
50t
Contaci-time phase parameter
For forward running, if t. is the time in seconds wte 5[
during which the foot of the leg-spring is in contact
with the ground, a contact-time phase parameter may 401
be defined as wgyt., where k., =mw? is the vertical
stiffness. For hopping in place, where the forward 35}
speed is zero and 6,=0, k,,,, and k., are identical.
From Fig. 8(a), (b) and (c), it is clear that w,t, falls as V' 3.0 O TUU VUT T U VT
and U increase, but rises as 0, increases (it is never o 2 0304 0506070809 1.01.1 1.2
greater than 2z nor less than ). ( )

Stride length

In Appendix C, a derivaﬁon is given of a closed-
form result relating the stride length to the input

Fig. 8. Dimensionless contact time wqyt, as a function of
(a) V;(b) U;(c) 8,. Because the contact time is determined by
the vertical motion, wq =(k,.../m)"’. The star in (a) marks the
result for the 72 kg man running at 18.0 kmh~! (Table 1).
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Fig. 9. Schematic drawing showing the trajectory of the mass (dotted curve), the vertical displacement of the
mass at mid-step (Ay) and other dimensions.
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Fig. 10. Contrasting two alternative strategies for running.
(a) Small dog. The solid curve shows how 8, would increase
with U if K, o were fixed at 6.98 and ¥V =0.05. The broken
curve, from Fig. 5(c), shows how 8, would increase with U if
JSoax/mg were minimized and ¥'=0.05. Crosses show results
for a 5 kg dog trotting, calculated from Cavagna et al. (1988);
(b) men. Solid curve shows K ;. fixed at 15.5; broken curve
shows f,,./mg minimized.

parameters U, V, and 8, for bipeds running and
quadrupeds trotting. The stride length s is defined as
the distance between footprints of the same foot, and
therefore includes the distance moved during both
aerial phases and both contact phases of a single stride
cycle.

Figure 9 is a schematic diagram used later. In
Fig. 10, data for 6, are given for a dog trotting and
men running. These data are compared with two
paradigms for running, constant leg stiffness (solid
curve) and minimum vertical force (broken curve). In
Fig. 11, the dimensionless leg stiffness is assumed to be
fixed at K; =15, Vis held constant at 0.18, and the
predictions for relative stride length S=5s/L, vs U and
6, vs U are compared with values calculated from
published measurements.

DISCUSSION

Is the leg-spring model plausible?

Since the undamped spring model presented in this
paper makes several predictions that are testable by
experiment, it is useful to review the plausibility of the
model in light of comparisons with published experi-
mental results.

Firstly, the generally good agreement between the
experimental records of vertical acceleration vs ver-
tical displacement and calculated simulations of the
same records (Fig. 6) lend support to the validity of the
model. It is true that the experimental record for the
man running shows an early rise in vertical force,
followed by a fall, before a rise to a second peak at
mid-step, and this feature is not predicted by the
model. There is evidence (McMahon et al., 1987) that
the early peak is due to the rapid deceleration of the
mass of the foot and shank as it strikes the ground, a
feature not represented in the present model.

The experimental records for both the man and
the kangaroo (Fig. 1) show that take-off occurs (4,
reaches —1 at the end of the contact period) when the
mass is somewhat higher than it was on landing. This
is a consistent feature of such records, and it is not
represented in the present model], which presumes a
symmetric landing and take-off.
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Fig. 11. Predictions of the model when V and K| g are fixed
at values that best represent stride length information.
(a) K gg does not vary with speed but Kyggzr increases as U
increases; (b) S =s/l, is assumed to obey Alexander’s relation
. §=2.3U9°5 (solid line); (c) the predictions of the model for 8,
(solid curve) compared with animal data. All animal points
calculated from experimental results given by Cavagna et al.
(1988).

A feature of the kangaroo simulation [Fig. 6(c)] is
the ‘stiffening’ character of the vertical spring. At low
force levels, the slope of the calculated curve in
Fig. 6(c) is only about 43 % of the value it has at the
highest force levels (mid-step). The experimental curve
characterizing the vertical spring in Fig. 1 reveals a

BM 23-Suppl-F

similar effect, since the slope for low force levels
(0> A,> —1) is about half of the slope at high forces
(A,>2). In the model, this property of the vertical
spring must be attributed to interactions between
geometry and dynamics, since the stiffness of the leg-
spring itself is strictly independent of force level. The
property of a stiffening vertical spring was found only
in simulations where the initial leg angles were large,
typically above 0.9 rad.

In a previous study from this group (McMahon
et al., 1987), it was found that men running normally at
intermediate speeds preferred a contact-time phase
parameter wgyt, near 4.2, but wyt, increased, eventual-
ly approaching 27, as the subjects deliberately flexed
their knees more to reduce the vertical stiffness of the
legs. The star in Fig. 8(a) shows that the contact-time
phase parameter wyt, is predicted to be 4.21 when the
input parameters are U=1.6, "=0.245, and 6,=0.5,
corresponding to the man in Table 1 running at
18.0 km h~ 1. Thus the present model is in agreement
with the previous experimental findings. In running
with increased knee flexion, where 8, increases and V
decreases, the present model predicts that wqt, rises
toward a limiting value of 2x, as was observed experi-
mentally.

Why is K gz proportional to U for fast running?

A significant feature of Fig. 4(b) is the nearly linear
relationship between the required K,g; (for a re-
entrant running cycle using a particular ¥ and 6,) and
the forward speed U, provided that U is greater than
about 2.0. Another nearly linear relationship exists
between K, s and V [Fig. 4(a)]. As shown in Fig. 5,
Joax/mg is also linear in U and ¥ for U>2.0. Why
should this be so?

A plausible explanation depends on the nearly flat
trajectory followed by the mass during the contact
period. An argument is given in Appendix D based on
the approximation that the mass follows a perfectly
level trajectory during contact. Setting the vertical
impulse due to the ground reaction force equal to the
weight of the mass times the contact period plus the
change in vertical momentum gives the following
expression for the leg-spring stiffness:

K gg=UV/C[sin 8o(1 —cos 0,)]
+1/C(1—cos 8,). 3)

Here C is a constant dependent on the shape of the
curve showing vertical force against time. (For the
range of parameters corresponding to fast mammalian
terrestrial locomotion, C is close to 0.6.) Also given in
Appendix D is an empirical formula based on correc-
tions to the above equation. The empirical formula is
capable of giving a value for K g as a function of U,
V, and 6, that matches the value obtained from the
numerical simulation to within about 0.5 % over the
following range of input parameters: 0< V' <0.8;
S<U<30; 04<0,<0.8. Another set of empirical
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formulae valid over the lower speed range 0 < V' <0.3;
1<U<3;04<0,<0.8, is given also.

Thus, the fact that K, increases nearly linearly
with both U and V for moderate and high values of U
is a consequence of the nearly flat trajectory followed
by the mass during contact. For a level trajectory, the
maximum compression of the spring at mid-step is
fixed by the choice of 6. It follows that, for a given 6,
the maximum force is proportional to K, p; when the

mass follows a level trajectory, and since K, s in- .

creases linearly with U and V, so does f_,,/mg, as was
seen in Fig. 5(a).

All this applies for values of U greater than about
2.0. For U<2.0, Figs 4b) and 7(a) show that K g,
falls below the extrapolated straight-line result valid
for large U. Any curve showing K| . vs U does not go
through the origin. There is a minimum value for
K| g6, and therefore a minimum value for U, for every
pair of values for ¥ and 6,. We remarked earlier as we
introduced the dimensionless stiffness K;;; (under
Methods) that if 6,, U, and ¥V were all equal to zero
and the leg-spring were pre-compressed until the
spring force matched the weight, then the minimum
value for K, g in this static, vertical geometry would
be 1.0. When the leg begins from an incompressed
state and when 6,, U, and V are not zero, the
minimum value for K, gg will be greater than 2.0. In
Fig. 7(a), simulating the man, we found that the lowest
value of U which allowed the simulation to converge
to a solution was U =047 corresponding to a K, gg
=2.29. Any lower value of U caused the mass to strike
the ground.

Why is Kygrr greater than K gg?

One of the most important results of this paper is
shown in Fig. 7(a). There it is demonstrated for input
parameters representative of a man running that
Kygrr is greater than K, g even for small values of U,
and the two diverge very far from one another as U
increases.

A physical explanation for the difference between
Kyert and K, g5 can be based on Fig. 9. The broken
curve shows the trajectory of the mass during the
contact period. Consider the instant at mid-step when
the leg is vertical and has length (I, cos 8,—Ay). At
this instant, the vertical force is f,,,. Thus the two
stiffnesses are:

Kyverr=Kyenlo/mg =(Jfnax/mg)/(Ay/lo) 4)

and
KLEG = kleglo/mg=(ﬁn-x/mg)/[l —Cos 90
+(Ay/lo)], ()

so that, for any finite value of 0y, Kvgpr> Ky gg-

In Fig. 7(b), Kvgrr Was found to be a nearly linear
function not of U but of U2, provided that U was
greater than approximately 2.0. A simple argument
can be given to understand the quadratic dependence.
Suppose that a contact period occupies a given frac-

tion Q of a complete cycle of vertical vibration, so that
wot. =27, (6)

where Q is assumed to be a constant. (For a given V
and 6,, this assumption becomes more reasonable the
higher the value of U, as was shown in Fig. 8(b).)
Squaring both sides, substituting w2=k,.,/m, and
solving for t2 gives

t2=4n2Q>m/kyen. ()

If we assume that fluctuations in horizontal speed of
the mass are small during contact, the horizontal
speed at impact u is about the same as the average
horizontal speed during contact. Therefore,

u>=41%sin0,/t2. (8)
Solving (7) for k,.,, and using (8) we obtain
ke =m2Q*mu?/13 sin? 6, 9

and since u®= U ’gl,, the dimensionless vertical stiff-
ness is

Kygrr=n*Q*U?/sin? 6,, (10)

so that Kygg 1 is predicted to be a quadratic function of
U, as the simulation showed.

An empirical formula, in which Kyggr is again a
quadratic function of U, is given in equation (D12) of
Appendix D. This formula, valid for the higher speeds,
gives values for Kygrr as a function of U, V, and 6,
that generally are within 0.5 % of the results of the
numerical simulation within the stated range of input
parameters. Another set of formulae, valid for lower
values of U, appears at the end of Appendix D.

Longer steps at higher speeds

When the assumptions of the simulation kept both
V and 6, fixed as U was increased, we found that the
stride length predicted by the model was unrealistical-
ly large at low forward speeds. To make an improve-
ment, we elected to specify the model in such a way
that 6, increases as U increases. Two schemes are
available to do this, one minimizing the peak force and
the other keeping the leg stiffness fixed.

Choosing a paradigm. In Fig. 10(a), data are plotted
showing 6, vs U for the 5.0 kg dog studied by Cavagna
et al. (1977, 1988). We calculated 6, from the measure-
ments published by these authors giving aerial time
and stride length as a function of forward speed during
trotting. We obtained the original films from the
authors and made our own measurements of leg
length [,, averaging the values at toe-on and toe-off.
The solid curve on the figure shows the prediction of
the model for 8, when K, g is fixed at 6.98 and V
=0.05 (Table 1). The broken curve shows the predic-
tion from Fig, 5(c) when ¥'=0.05 and 8, increases with
U in such a way as to minimize f,,./mg. The data in
Fig. 10(a) fall generally in the (narrow) space between
the two curves. From this, we cannot decide whether it
is more likely that the dog is following the constant
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leg-stifiness or the minimum-force paradigm, since
Fig. 10(a) could be used to support either hypothesis.

In Fig. 10(b), data for the average results of 10 men
are compared with the two curves predicted by the
model, that minimizing the peak vertical force (broken
curve), and that for a fixed K| gg (solid). In this figure,
the solid curve represents the particular choices for
K, rc and V used in Table 1 to simulate a man running
at 18.0 kmh~'. Two points are worthy of note. The
first is that the broken curve is now above the solid
curve, which is opposite from the order in Fig. 10(a).
The second is that the points fall closer to the solid
curve, and are therefore in better agreement with the
paradigm of constant leg stiffness than that minim-
izing peak vertical force.

Is constant K| g a reasonable assumption? It is easy
to visualize real physical circumstances corresponding
to those simulated in Fig. 10, where leg stiffness re-
mains fixed as speed increases. Alexander (1988) has
pointed out that when the length of the Achilles
tendon is much longer than the length of the muscle
fibers in series with the tendon, the compliance (1/stiff-
ness) of the tendon may be larger than that of the
muscle, so that the stiffness of the leg may be deter-
mined by the stiffness of the tendon. If, as Alexander’s
argument suggests, this is true of the leg of a trotting
dog, then the leg stiffness would not be expected to
change much with speed because the stiffness of the
tendon is about constant at moderate and high force
levels.

Two other studies give evidence supporting the
assumption of constant leg stiffness. In experiments
using decerebrate cats, hindlimb stiffness was meas-
ured as the soleus muscle was forcibly lengthened by a
small stretch (Hoffer and Andreassen, 1981). The
overall stiffness, including that contributed by the
stretch reflex, was found to vary only slightly with
force at moderate and high force levels. In studies of
human subjects bearing weights on their shoulders
while standing on a springboard with knees flexed at a
constant angle, it was found that the stiffness of the
antigravity muscles including reflexes varied by less
than 10 % as the weight on the shoulders went from
zero to more than twice body weight (Greene and
McMahon, 1979b). It is interesting to note that if the
simulations of Fig. 10(a) did indeed represent a dog
trotting at various speeds, the forward speed could
change by a factor of 2.2, from 40 to 8. 7kmh~! and
the vertical stiffness k.., could increase by a factor of
3.58, from 2.88 to 10.3 kN m ™! while the leg stiffness
remained fixed at Ky g =6.98, corresponding to ki,
=149 kNm™L.

The ingenious running robots built by Marc Rai-
bert and his group (Raibert, 1986) have legs that
contain pneumatic springs in series with hydraulic
actuators, so that the stiffness of the leg does not
change much as speed is increased. Hence, evidence
exists, in the form of a legged robot, that running
faster without increasing the stiffness of the legs is a

practical strategy. The question remains: is this what
animals do?

Fixing the parameters of the constant-K,gq
model. In Fig. 11, the parameters of the model have
been fixed in such a way as to give the best prediction
of stride length as a function of speed for all the
animals considered. As shown in Fig. 11(a), Kz has
been set at the value 15.0, and V is constant at 0.18.
The justification for fixing ¥ is that when V is inde-
pendent of the running condition, the distance the
center of mass falls during an aerial phase is a given
fraction of the leg length. If the legs are to clear the
ground at both low and high forward speeds, it is
reasonable to require that the body rises and falls a
distance proportional to the leg length.

Alexander et al. (1977) recommended an empirical
power-law function S=2.3U%*° to represent data he
obtained for walking, trotting, and galloping animals
of a range of sizes and speeds. Since that formula also
fits the data (not Alexander’s) plotted in Fig. 11(b), we
elected to use the same formula and equation (C2) to
find a set of paired values for , and U that was also
compatible with a constant Kz and constant V. The
result, which was obtained by iteration on V, is plotted
in Fig. 11(c).

A test of the model. Since experimental data for 6,
as a function of U were not used to formulate or
specify the model, Fig. 11(c) may be regarded as a test
of the theory. Agreement is quite good, particularly for
the larger animals. A trend is apparent in the figure:
the smaller the animal, the more its data points tend to
lie above the curve. The fact that the smaller animals
tend to swing their legs through larger excursion
angles is a regular feature of animal scaling mentioned
previously by McMahon (1975).

In summarizing Fig. 11, we can say that a model for
terrestrial running based on the idea that the leg is a
spring of constant stiffness is able to account for the
way in which both stride length and step length
increase with speed for bipeds running and quad-
rupeds trotting. Faster speeds are achieved by taking
somewhat longer steps [Fig. 11(c)], and the longer
steps give rise to a higher vertical stiffness [Fig. 11(a)]
and consequently a shorter contact time. The longer
stride length at higher speed [Fig. 11(b)] is determined
by a greater distance moved during both the contact
and the flight phases.

What experimental measurements would be
required to calculate Ky gpr and K gg?

We conclude with a short discussion about how
experimental observations of running may be used to
calculate both the effective vertical stiffness, and, since
this has more physiological relevance, the stiffness of
the leg-spring. There are three ways to calculate k..
The three methods give answers which are not ident-
ical, but are the same to within a few per cent when
applied to most of the parameter range of the model
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of the present paper utilizing a frictionless, linear
leg-spring.

(1) F,.-and-Ay method. This method was ex-
plained in connection with Fig. 6 and the definition of
k.- The peak vertical force is divided by the down-
ward displacement of the center of mass from foot
strike to mid-step. The accuracy of this method is
greatest when the segment of the force-displacement
curve corresponding to contact is nearly linear, as it
was in Fig. 6(b).

(2) Half-period method. Assume that the shape of
the experimental vertical force record is sinusoidal
(even for the simulation, it is not strictly sinusoidal
unless there is no forward motion). Measure the time
between the moment of zero vertical acceleration
(vertical force =mg) when the body is moving down
and the moment of zero vertical acceleration when the
body is moving up. Take this to be the half-period of
vertical vibration P/2 and calculate k,,,,=m(2n/P)*/2,
This method was first used by Cavagna et al. (1988).

(3) Groucho method. Both of the above methods
require a force plate capable of measuring the vertical
force during a step. A third method, explained in
McMabhon et al. (1987), requires only a knowledge of
the total body mass m, the contact time t_ and the time
in the air t,. The result may be stated:

(11)

kver! = mw%,,
with
(12)

Relatively simple experiments may be all that is
required to use one of the three methods above to
determine k..., for a given steady-speed running ex-
periment. A central theme of this paper is that except
for hopping in place, the stiffness of the leg is not the
same thing as k,,,,. How, then, should one estimate k.,
from experimental data?

A simple method is to use equation (5). The para-
meters needed are f.,,/mg, 6,, and Ay/l,, all of which
are available from force-plate measurements, a know-
ledge of forward speed, and body dimensions.

tan (m—wgt./2)=wqt,.
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APPENDIX A: HOPPING IN PLACE

In Fig. 2(a), the displacement y of the mass is measured
upward. The spring is slack when y=0. The vertical velocity
dy/dt at the moment the leg-spring strikes the ground is —v,
where v is a positive quantity. Because energy is conserved
during the rebound from the ground, the take-off velocity at
the end of the rebound is v. The equation of motion may be
written in the form:

d2Y,/dT3i=—(Y, +1), (A1)

where the following dimensionless variables have been used,

Yl _=(kven/'ng)y1 (AZ)

T =wet, (A3)
and where ¢ is time in seconds and

W= (kven/m) 12, (A4)

The initial conditions on the vertical displacement and
velocity are

Y,(0)=0 (AS)
and

dY,/dT,(at T, =0)= —vw,/g. (A6)

The solution of (A1) subject to conditions (A5) and (A6) is
(A7

Since the vertical force f, applied by the spring to the mass is

Y; = —(vwo/g) sin Ty —(1—cos T;).

.f;= _kveny= _'nng (AS)
the vertical force normalized by the weight mg is '
F,=f,/mg=(vwo/g)sin T; +1—cos T;. (A9)
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The phase Ty maxrorce) 3t Which F, reaches a maximum value is
found by differentiating (A9) and equating to zero, giving

Tl(mnxl‘orca) =tan~ ! ( - Uwo/g) =n—tan~ ! (Uwo/g)- (A].O)

The peak force F,,, occurs midway through the contact
periOd’ at Tl(mnforce)' Thus

an=(vw0/g) sin Tl(mlxl‘orcc) +1—cos Tl(mxforeev
(A11)

and the dimensionless period of contact Ty ndcontacy iS

Tl (endcontact) = Wolc = 2Tl (maxforce) = 2r—2tan"} (”wo/g)-

(Al2)
The time spent in the air during one aerial phase is
taeri =20/8, (A13)
giving a dimensionless aerial time of
T (aerian = 200 /8. (A14)

For a biped hopping in place on both legs, a complete hop
is one contact phase and one aerial phase. The stride
frequency is defined to be f;, measured in hops per second.
Given in dimensionless terms, it is

¢: =f;/w0 = 1/( Tl(endcnnllc!) + szo/g), (Als)

where T enacontacy IS given by (A12). Since both terms within
the parentheses of (A15) are determined by vw, /g, there is a
unique relationship between ¢, and vw,/g. At low values of
vwo/g, ®, is near 27. At large values of the Groucho number
vwo/8, ¢, tends toward 1/(2vw,/g), so that the dimensionless
stride frequency ¢, approaches zero.

When an animal runs in place, hopping on first one leg and
then the other, the total stride period is the time to complete
two hops, so that the stride frequency is half of that given by
(A15).

APPENDIX B: HOPPING OR RUNNING FORWARD

The variables [, ly, x, y, 8, and 8, are defined in Fig. 2(b).
The equations of motion are

d2X/dT?=K, gg(1-L)sin6 (B1)

and
d2Y/dT?=K gg(1 —L)cos 6—1 (B2)

with
X=x/ly; Y=y/lg; L=lI/ly, (B3)
=t(g/lo)'"? (B4)

and
Kyiec =kieglo/mg. (BS)

The initial and final conditions are

6(T=0)=—40,, (B6)
8(T = Tngcontact) = 0o, (B7)
L(T=0)=L(T= Tengcontact) = 1, (B8)
dX/dT(T=0 and T= T, 4conacr) =%/(glo)'2=U, (B9)
dY/dT(T=0)= —v/(gly)*/, (B10)

and
dY/dT(T = Tengcontact) =0/(8lo)* > = V. (B11)

APPENDIX C: STRIDE LENGTH AND STRIDE
FREQUENCY

For any animal gait, the distance between footprints of the
same foot is called the stride length. When a biped runs or a

quadruped trots, the distance moved forward during one
contact period is 2l, sin 6, and the distance moved forward
during one aerial phase is 2uv/g. Doubling these distances to
get the distance moved forward during one stride cycle, the
stride length s is

s=4l, sin 8, +4uv/g. (Cy

Defining the dimensionless or relative stride length as S
= S/ IO’
S=s/lo=4(sin 5+ UV). (C2)

Provided that the fluctuations in forward speed during
contact are small, the speed at contact u can give a good
approximation of the average forward speed during a stride
cycle. If this is true, then the stride frequency £ for bipeds
running and quadrupeds trotting is

fi=u/s=u/4(l, sin 0y, +uv/g), (C3)
so that the dimensionless stride frequency ¢, is
b, =£/(8/15)"*=U/4(sin 65+ UV). (C4)

* APPENDIX D: APPROXIMATE K, FOR A
FLAT TRAJECTORY

Suppose the mass follows a flat trajectory during the
contact period. As shown in Fig. 9, the maximum com-
pression of the leg-spring at mid-step is /o(1 —cos 6,). Thus,
the maximum vertical force at mid-step is

fmn = klel lo{ 1-~cos 00 )- (D 1)

The vertical impulse is the area under the curve showing
vertical force vs time. An approximation of this vertical
impulse is

Impulse = mgt .+ 2mv = Cfyay tc- (D2)
Assuming that the forward speed u is nearly steady,
urs/t,=2l,sin 6y/t,. (D3)

Solving (D1) for k., and using (D2), (D3), Ky gc=k5lo/mg
and uw=UV/gl,,

Ky gg=UV/C[sin 8y(1 —cos 6,)]+1/C(1 —cos 8,).  (D4)

Empirical formulae: high speed

The following empirical formulae give the same results as
the numerical simulations to within 0.5% over the high-
speed range S<U<30; 0< ¥V <0.38; 04<6,<0.8.

Kigg=HU+J, (DS)

with
H=2.0V/{sin 6,(1 —cos §,)N], (D6)
N =1.423 —0.3096,, D7)
J=2.0/(1—cos 8,)-P, (D8)
P=00,—R, (D9)
0=0.616+1.629V +4.051V2, (D10)
R=2.610+1.397V—0.924V2. (D11)

Over the same range, Kyggy may be found from:

Kygrr=(4U + B)?, (D12)

with
A=1.788(0,) %888, (D13)
B=5.905(10) " 1-352V, (D14)

Empirical formulae: low speed

At low speeds, K, . and Kyggt are no longer nearly linear
functions of U and V. The following expansions give the same
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range 1 <U <3, 0<V<0.3, 04<8,<0.8.
Koo =A(0,)+B(B,)U+C(B,)U?+D(6,) U3
AOg)=Ag+A;0,+A,03+A,03+ A, 08+ A:03

B(Bo)=Bo+ . ..
C(0g)=Co+ . ..

D(Bg)=Do+ . ..

Coef.

V No. A B C D

0.00 0 70.512 96.100 —35.3560 4.3960
0.00 1 —392.550 —453.710 160.5100 —18.9190
0.00 2 058.230 940970 —-316.4100 34.5900
0.00 3 —1232.100 —986.910 307.9500 —29.6310
0.00 4 814.150 505.330 —139.4200 10.1590
0.00 5 —219.780 —95.134 199910 —0.2118
0.05 0 32.846 129.870  —30.0300 3.5513
0.05 1 —192.920 —626.560 122.0800 —13.4340
0.05 2 516.340 1307.400 —204.5700 19.6910
0.05 3 — 742,040 —1367.600 141.7700 —8.3794
0.05 4 . 548.870 689.190 —13.9070 —5.6238
0.05 5 —165.600 —124.570 —18.4490 4.6271
0.10 0 —-3.170 163.210 —27.7880 3.1094
0.10 1 9.725 —812.680 106.7900 —10.2620
0.10 2 48.062 1724.600 —150.8100 8.6397
0.10 3 —210.060 —1811.100 38.3280 12.0240
0.10 4 260.470 898.980 84.5890 —24.2430
0.10 5 —108.660 —153.800 —54.7150 11.2350
0.15 0 —8.564 158.290 —8.3556 0.6799
0.15 1 19.151 ~771.390 —15.3730 4.5254
0.15 2 57.831 1625.500 159.2800 —~27.6950
0.15 3 —250.360 —1713.200 —356.4800 56.7330
0.15 4 300.730 860.780 337.0400 —51.8810
0.15 5 —123.450 ~—149.660 —120.1500 18.2000
0.20 0 —27.482 166.400 —3.0621 0.4582
0.20 1 151.940 —849.670 —20.4160 1.2781
0.20 2 —345.580 1621.000 96.8780 —7.1177
0.20 3 371.770 —2236.200 —173.5500 13.6310
0.20 4 —175.750 . 1298.800 149.3700 —12.8800
0.20 5 15.743 —-289.170 —53.4380 5.2200
0.25 0 —85.256 223.170  —12.1260 1.7650
0.25 1 620.740 —1345.600 94.2170 -14.6110
0.25 2 —1869.600  3603.800 —356.7700 54.9920
0.25 3 2810.100 —5003.100 636.8400 —96.8440
0.25 4 —2087.800  3508.800 —531.5300 79.8460
0.25 5 606.420 —-975.790 165.1400 —24.5580
0.30 0 29.796 39.120 113.0800 —18.1840
0.30 1 —391.900 236.850 —962.7800 155.7200
0.30 2 1594.800 —1753.300 3195.8000 —521.8400
0.30 3 —2692.300 3923.000. —5267.4000 866.9800
0.30 4 2682.600 —3812.800 4310.8000 —713.8700
0.30 5 —937.130 1391.700 —1402.6000 233.2500

Kyerr=A(B,)+B(85) U+ C(8,)U*?
ABy)=Ag+A4,0,+ A0+ A0+ A,05+A563
B(8,)=By+ . . .

C(0y)=Co+ ...
Coef.

14 No. A B C

0.00 0 —104.710 109.310 616.060
0.00 1 789.040 —943910 —3061.800
0.00 2 —2422.500 3021.600 6720.000
0.00 3 3596.100 —4592.700 —7707.900
0.00 4 —2585.100 3352.800 4522.600
0.00 5 718.850 —945.560 —1074.100
0.05 0 —32.194 265.750 152.950
0.05 1 —193.550 —981.490 —789.900
0.05 2. 1054.500 1557.500 1878.300
0.05 3 —1892.400 —1182.900 —2341.600
0.05 4 1504.000 360.570 1488.700
0.05 5 —454.660 —35.731 —381.320
0.10 0 —25.896 183.480 129.070
0.10 1 —15.986 —746.630 —652.730
0.10 2 257.240 1434.800 1496.700
0.10 3 -—590.240 —1429.200 —1807.600
0.10 4 562.690 685.380 1124.500
0.10 5 —201.810 —113.270 —285.060
0.15 0 10.661 99.079 144.150
0.15 1 —203.870 —302.930 —776.040
0.15 2 709.980 394.310 1865.900
0.15 3 —~1163.800 — 154480 —2349.000
0.15 4 930.910 —106.330 1515.500
0.15 5 —297.130 84.253 —-396.610
0.20 0 20.131 59.697 140.870
0.20 1 —223.800 —119.700 —745.380
0.20 2 672.190 30.880 1743.800
0.20 3 —957.830 164260 —2117.700
0.20 4 655.370 —184.780 1306.100
0.20 5 —176.970 61.086 —323.790
0.25 0 11.590 57.958 135.890
0.25 1 —137.780 —173.770 —708.220
0.25 2 399.470 268.710 1632.500
0.25 3 — 546.060 —243.040 —1954.700
0.25 4 352.200 135.490 1188.700
0.25 5 —89.867 —34.721 —290.620
0.30 0 —169.060 274.330 103.340
0.30 1 1392.500 —2054.200 —440.380
0.30 2 —4650.200 6559.000 767.050
0.30 3 7632.000 —10531.000 —580.960
0.30 4 —6164.200 8402.400 114.530
0.30 5 1957.200 —2652.300 41.128






