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Abstract

Having long been the realm of molecular chemistry, astronomy, and plasma diagnostics,
the upper millimeter-wave band (~100 to 300 GHz) and the THz region above it have
recently become the subject of heightened activity in the engineering community because
of exciting new technology (e.g., sub-picosecond optoelectronics) and promising new
“terrestrial” applications (e.g., counter-terrorism and medical imaging). The most
challenging of these applications are arguably those that demand remote sensing at a
stand-off of roughly 10 m or more between the target and the sensor system. As in any
other spectral region, remote sensing in the THz region brings up the complex issues of
sensor modality and architecture, free-space electromagnetic effects and components,
transmit and receive electronics, signal processing, and atmospheric propagation. Unlike
other spectral regions, there is not much literature that addresses these issues from a
conceptual or system-engineering viewpoint. So a key theme of this chapter is to review
or derive the essential engineering concepts in a comprehensive fashion, starting with
fundamental principles of electromagnetics, quantum mechanics, and signal processing,
and building up to trade-off formulations using system-level metrics such as noise-
equivalent power and receiver operating characteristics. A secondary theme is to
elucidate aspects of the THz region and its incumbent technology that are unique,
whether advantageous or disadvantageous, relative to other spectral regions. The end
goal is to provide a useful tutorial for graduate students or practicing engineers
considering the upper mm-wave or THz regions for system research or development.
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Fig. 1. Heirarchy of sensor technology in the mm-wave and THz regions

Introduction

A. Background and Purpose

The author has been in and around the field of remote sensing for over 20 years
and over this period has observed a significant decline in the education and understanding
of this topic, particularly since the end of the U.S./Soviet Cold War around 1990. There
was little challenge finding interest and support for remote sensing when the biggest
threat to U.S. National Security was intercontinental and theater ballistic missiles. This
threat alone created entire industries to produce high-performance RF electronics,
electromagnetic components, digital signal processing electronics, and signal-processing
software, to name a few. Now, with the threats of terrorism, global warming, and bio-
catastrophe, the field of remote sensing is experiencing a resurgence. And even though
the threat ranges have shrunk from thousands of kilometers to thousands of meters and
the threat agents have shrunk from missiles to molecules, many of the principles and
methodologies developed during the Cold-War period should be applicable. A key
motivation for this chapter is to provide a primer for students or young engineers or
scientists considering remote sensing as a research topic or as a career. In the limited
space of one book chapter, it is impossible to cover this topic in a comprehensive fashion.
Therefore, it will focus on fundamental principles behind system architectures and remote
sensing in the millimeter-wave and THz regions, which many consider to be at the upper
end of the useful RF spectrum.

A secondary purpose for this chapter is to provide some quantitative contrast of
the various remote-sensor architectures. There have been several new approaches
demonstrated during the past decade that fall outside the traditional types of mm-wave
and THz remote sensors. For example, an active sensor has been developed to detect
concealed weapons, and passive focal plane arrays have been developed for all-weather
imaging. The present chapter will contrast these primarily within a sensor system
context, not at the device or component performance. In spite of its limited popularity,
the THz region offers several new sensor applications such as the remote detection of



airborne toxic bioparticles, the identification of concealed weapons and contraband, and
all-weather aircraft landing.

By focusing on the sensor principles and architectures, a sacrifice will be made
in terms of technological detail. ~There is simply not enough space to cover all the
electromagnetics, solid-state physics, and signal processing associated with the myriad of
components and devices being used today in THz sensors. There is also not enough
space to give proper credit to some of the emerging THz technologies that have shown
great results in the laboratory but have not yet been used for remote sensing. Principal
among these are the optoelectronic technologies, such as THz generation by ultrafast
photoconductive switches and mixers using solid-state and semiconductor lasers
operating mode-locked or cw at near-infrared wavelengths. One of these techniques,
called “T-ray imaging,” has advanced to the point of commercial production.
Fortunately, several excellent review articles have already been published on both the
traditional ™ and optoelectronic technologies, *° and the reader is referred to one of
these articles for more information.’

B. Sensor systems

The THz region of the electromagnetic spectrum has long been the realm of
basic sciences, such as molecular chemistry and astrophysics, but has not been broadly
utilized for commercial or military systems because of the lack of transceiver technology
and because of the strong attenuation of THz radition through the terrestrial atmosphere.
Historically, the most common THz remote sensors have been passive radiometers
utilizing coherent (i.e., heterodyne) detection. The most common systems for point
sensors have been Fourier transform spectrometers utilizing incoherent transmitters and
receivers.

As in other regions of the electromagnetic spectrum, scientists and engineers
have long sought to construct systems in the THz region to sense the propagation through
or reflection from objects or regions of space having scientific or technical interest.
Such sensor systems are generally classifed according to three criteria which together
define the sensor modality. They are: (1) the proximity of the sensor and the object of
interest, (2) the source of THz radiation or, equivalently, the design of the transmitter,
and (3) the sink of the THz radiation or, equivalently, the design of the receiver. These
three criteria are shown in the sensor hierarchy of Fig. 1. In point sensors, the object or
material of interest (henceforth referred to as the target) is located in close proximity to
the sensor and the THz radiation is provided by a transmitter. The transmitter can be
either coherent or incoherent. A good example of a THz point sensor with an incoherent
transmitter is a Fourier transform spectrometer having a hot incandenscent or discharge-
tube source. A good example of a THz point sensor having a coherent source is a
network analyzer, be it vector or scalar. Because of the proximity, practically all of the
transmitted power can be directed through or off-of the target, so little transmitted power
is required.

In remote, or stand-off sensors, there is a relatively large separation between the
target and the sensor. The separation generally means that only a small fraction of the
transmitted power can be delivered usefully to the target. If this small fraction can be
detected back at the receiver, the modality is called active and the resulting sensor is
called a radar (radio detection and ranging). It is fascinating that the radar concept was
first proposed in the early part of the 20™ century, promoted by none other than G.



Marconi, and was successfully developed into working systems even more quickly than
wireless communications. But in the THz region the relatively low power of sources and
the high opacity of the atmosphere has hindered radar development, and system
developers have relied on a second modality called passive. This generally entails the
illumination of the object or region by incoherent radiation from its surroundings, which
if intense enough can be detected by the remote receiver. A good example of a passive
THz remote sensor is the total power radiometer often used to measure trace gases in the
atmosphere or emissions from interstellar media. The advantage of a passive system is
clearly that the source radiation comes for free. The downside is that the atmospheric
attenuation and fading effects can quickly degrade the sensor performance.

The third defining criterion for sensor modality is the receiver architecture. As
in the transmitter there are two types, coherent and incoherent, both discussed later in
Sec. IV. Within the coherent category there are two types: (1) heterodyne and
homodyne. Within the incoherent category there are also two types: (1) power detection
and photon detection. As shown in Fig. 1, a coherent transmitter is generally coupled to a
coherent receiver, and an incoherent transmitter is generally coupled to an incoherent
receiver. It is surprising to some people that a passive system can have either receiver
type. A coherent receiver measuring an incoherent signal (e.g., white noise) essentially
filters out that particular Fourier component of the signal that coheres to the local
oscillator waveform. In other words, it cross-correlates with only one space-time mode
of the otherwise random spectrum of incoming radiation.

One might on first glance think that a passive THz sensor operating at
temperature T and relying on power received via thermal radiation also of temperature T
is a violation of the first law of thermodynamics. After all, this law would require that in
equilibrium the power transferred from the object to the sensor should be matched by a
power transferred from the sensor to the object. But THz sensors, like RF systems in
general, are categorically not in thermodynamic equilibrium ! A good way to see this
point is to think about the fact that the first active component (i.e., one capable of doing
or receiving electromagnetic work) in most RF receivers is a low-noise amplifier (LNA).
Modern solid-state LN As operating up to several GHz have very low noise figures and
correspondingly low noise temperatures, typically in the range of 100 K or below. This
means that they produce noise equivalent to a device at much lower temperature, made
possible by the fact that the LNA is an active device operating well out of
thermodynamic equilibrium. This is why active devices are so pervasive in all
electromagnetic sensors, both in the transmitter and the receiver.

C. THz Solid-State Devices: A Longstanding Challenge

No summary on the THz region would be complete without some discussion of
its technology, ranging from passive quasi-optical components to quantum-effect solid-
state detectors and unique coherent sources. Because many articles in recent years have
reviewed this technology thoroughly, the discussion here will be kept to a minimum.
And in keeping with the author’s viewpoint on research, this summary occurs after the
discussion of phenomenology and system-level issues.  The development of new
technology with a system perspective allows the engineer or scientist to design and
characterize components and devices with far greater insight and practicality than
otherwise.



Because of the relative lack of components in the THz region, some researchers
have referred to it as the electromagnetic frontier.  Although a bit misleading, this
statement is not without justification. The THz region has presented pioneering
investigators with one experience common to most “frontiers”, namely technical
difficulty. The difficulty is based in two well-known but seldom discussed physical
characteristics of operating any system in the THz region at room temperature. First, in
the THz region the photon energy hv is much less than kgT around room temperature,
where kg is Boltzman’s constant. This is in contrast to systems operating at near-infrared
and shorter wavelengths. Then according to the Boltzmann canonical distribution,
quantized states separated by hv tend to have the same population. Hence, stimulated
absorption is nearly as likely as stimulated emission. This affects the ability to measure
or utilize atomic and molecular transitions at terrestrial temperatures and pressures.

Second, the THz region tends to be high enough in frequency that the classical
behavior (i.e., drift and diffusion) of electrons and holes in semiconductors begins to
disappear, and the coupling between electromagnetic waves and semiconductor devices
weakens. In short, at frequencies for which ot > 1 an electromagnetic wave is oscillating
too fast for free carriers to respond. A more precise way to understand this effect is to
recall from classical electromagnetics that the energy transfer from an electromagnetic
wave to free carriers is described by J-E where J-E is the Joule term of Poyning’s
theorem and denotes the time average over many cycles of the electromagnetic fields.
When the ot > 1, the free carrier current density J according to (1) approaches a

quadrature relationship to the electric field so that J-E — coswt-sinwt = 0. The
incoming electromagnetic wave that every device must respond to simply cannot transfer
energy into the free carriers, and the device function disappears.

A good example of this is the channel conductance of any field effect transistor
(FET). Beita 3D, 2D, or 1D confinement, the transport of free carriers in the channel is
governed by their concentration and their ac conductivity. In the simple model of ac
conductivity put forth by Drude, this is given by

1+ jor

where o is the dc conductivity and t is the momentum relaxation time. As an example,
we consider electrons in GaAs which at room temperature have a mobility of
approximately 6000 cm?/V-s and an effective mass m* of 0.067m,. According to kinetic
theory, the mobility is related to T by p = et/m*, so that under these conditions t = 0.23
ps. The corresponding 3-dB conductivity frequency is f = (2nt)" = 0.69 THz. Of
course, under device operating conditions the large internal electric fields make the above
small-field approximations less accurate.

A second example is the bipolar junction transistor (BJT). Whether
constructed with homo- or hetero- p-n junctions, a BJT is also ultimately limited in speed
by an RC time constant. A leading contribution to R is the base majority carrier
resistance, which depends on the majority carrier concentration and ac resisitivity.
Again, in the THz region, the resistivity begins to increase significantly. The second
phenomenon that greatly affects electronics is that in solid-state material the THz
radiation generally obeys wt. > 1, where 1. is the momentum relaxation time, and
generates an electrical photocurrent at the difference frequency. The difference-
frequency current, in turn, generates THz power by connecting it to a suitable load, such
as a planar antenna.



Nevertheless, several technological breakthroughs have occurred during the past
decade that make THz sensors more practical than ever before. First there has been a
rapid development of THz detector and mixer technology including Schottky varistive
mixers, superconducting-insulating-superconductor tunnel junction mixers, and
superconducting hot electron bolometers. Second, there has been a parallel rapid growth
of THz solid-state source technology including Schottky varactor multipliers. Third,
there has been a rapid development of ancillary technologies in the millimeter-wave and
near-infrared regions to support the THz sources. In particular, there has been a steady
development of monolithic microwave- and millimeter-wave integrated circuits (MMICs)
up to around 100 GHz . Specifically, MMICs solid-state power amplifiers are now used
to drive Schottky multipliers much more efficiently than ever before. Second: (1) growth
and fabrication of semiconducting material having photocarrier lifetime less
than 1 ps, (2) modern microfabrication techniques that allow sub-micron electrode
features to be patterned on the photoconductor surface, leading to subpicosecond
electrical time constants, and (3) integration of photoconductive elements with compact
planar antennas, leading to efficient coupling of the THz radiation to free space.

An ancillary breakthrough that strongly supports the optoelectronic THz
generation approach has occurred in the field of solid-state and semiconductor lasers.
Solid-state materials such as Ti:Al,Os, have been developed that provide unprecedented
values of gain-bandwidth andcan provide high levels of power tunable over 10s of nm.
Various techniques such as distributed Bragg reflectors, distributed feedback structures,
and external cavities have all been integrated with semiconductor laser diodes to produce
sources with useful output power (>1 mW) and high spectral purity. And in the popular
fiber-optic telecommunication band around 1550 nm, the erbium-doped fiber amplifier
(EDFA) has been developed that can boost the power of spectrally-pure laser-diode
sources up to ~1-W level.

A key advantage of THz sensors over infrared and visible ones is ultimate noise
limits. As will be shown later in Sec. VI, both direct and coherent receivers operate
against fundamental noise limits that depend on the background radiation and the photon
frequency. In the coherent case, the limit is simply the photon shot noise that has noise
equivalent power equal to hv/n, where 1 is the receiver coupling efficiency. Fig. 2 shows
this limit plotted for n = 1 in terms of the photon energy hv/e and equivalent temperature,
hv/kg . Of course, this same advantage is shared by RF receivers operating at lower
frequencies, which is one of the reasons RF communications, be it wired or wireless, is
generally superior to photonic communications in terms of sensitivity.
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Fig. 2. Quantum-limit defined by the minimum energy — one photon — per
spatial mode from the mm-wave region through the visible region of the
electromagnetic spectrum.

I. THz Radiation

The THz portion of the electromagnetic spectrum is loosely defined as that
region between approximately 300 GHz and 3 THz. As such it overlaps two older
regions — the submillimeter-wave region between 300 GHz and 3 THz and the far-
infrared region between 3 and 30 THz. Although, lagging behind the RF, infrared, and
visible regions in terms of technological maturity, but is still subject to the same laws of
electromagnetics (i.e., Maxwell’s equation), quantum mechanics (i.e., photon effects),
and radiative transport as any other region.

A. Poynting’s Theorem: Classical Picture

One of the profound results of electromagnetic theory (i.e., Maxwell’s
equations) is the existence of traveling or propagating waves, which must always be
associated with two quantities, E and H — the electric and magnetic field vectors. An
important theorem pertaining to propagating waves is the energy, or Poynting’s theorem,
which states that the propagating instantaneous power associated with the wave is given
by S=ExH. S represents the instantaneous power in the wave, and is applicable no
matter what its time or space dependence. Since E and H are always orthogonal in free-
space, H = E/z,, and
E(t) .

S= §
un




where 7, is the intrinsic impedance of free space (377 Q) and $ is the unit vector along
the direction of S.

Poynting’s vector and radiation propagation become particularly simple in the
special case of sinusoidal time dependence, sometimes called harmonic waves. The
electric and magnetic field vectors, E and H, then have solutions of the form
E= Re{Eej"*}and H= Re{l—~|ej""}, where the wig over denotes a phasor (complex,
time-independent), quantity. And the time-averaged power 1is given by
S-=1/2Re{E x H*}.

An important quantity for sensors is the time-averaged power flowing into the

sensor aperture, P =S-A=(1/2)Re{ExH}-A, where A is the sensor areal vector

(pointed perpendicular to the sensor surface). An even more important quantity is the
power usefully absorbed,

1 -
PabsEU'PinCZEU'Re{EXH}'A (1
and n is the power coupling efficiency. Since m is the fraction of incident power

absorbed, it must account for the effects of reflection at the environment-sensor interface,
unabsorbed radiation that passes through the sensor, etc. The majority of sensors couple

radiation in from free space propagating perpendicular to the surface. In this case H is
perpendicularto E, |H || E|/Z, ,and
Pine = Y4(E* A)/zo = Ya(go cE* A) = cUA | )
so that
Puys=1cUg A (3)

where Ug is the energy density for the electric field and c is the speed of light in vacuum.

B. Harmonic-Oscillator States: Quantum Picture

When the traveling wave phenomenon is addressed in quantum mechanics, the
oscillatory nature in the classical picture is captured by the harmonic oscillator model in
the quantum picture. The reader is assumed to understand the important derivation, so
here we only state the result for the energy eigenvalues for a harmonic oscillator,

U,=(n+1/2)-hv 4)

In this expression, n is a positive integer starting at zero, h is Planck’s constant, v is the
oscillator natural frequency, and the ' is the “zero-point” energy, i.c., the residual
oscillator energy eigenvalue when n = 0. As taught in basic quantum mechanics courses,
the zero-point energy can not do useful work. For example, it can not be used to transmit
information in a radar or communications system.
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C. Types of Radiation

C.1 Coherent Radiation

The classical sinusoidal waveforms are both replaced by a wave function called
the coherent state of frequency v = w/2n. The amplitude, or occupancy, of this state
corresponds to the instantaneous power associated with the classical field amplitudes E or
H, and the occupancy number represents the number of photons in this state. Each
photon has energy hv, where h is Planck’s constant. The coherent state is emitted by
oscillators, be they electronic resonator-based sources or atomic lasers.

A necessary aspect of the quantum-mechanical picture is fluctuations associated
with the sensor measurement process. If one had a detector fast and sensitive enough to
measure the individual photons, one finds that the photon number in the coherent state
itself is random and obeys Poisson statistics. In other words, the probability of measuring
n photons in the mode in an arbitrary time interval is given by

<n>"
p(n)= e—<n>
n!

where <n> is the mean number of photons measured in this same interval over many
different measurements. It is simple to verify that this distribution is normalized (i.e.,

i p(n) =1) and that inp(n) =<n>.
0 0

This may first appear to be contradictory to what we know about coherent
radiation — namely, a sinusoidal dependence of the field quantities (E and H) at frequency
o and a sin® (ot) dependence of the instantaneous power. This applies to a coherent state
as well, but in terms of the mean photon number in the mode v. In other words, the
Poisson distribution gets replaced by

[<n>®"
n!
where < n > (t) oc sin’ (wt) , the same time dependence as the instantaneous intensity.

p(n) =

A lucid discussion of the coherent state and its statistical properties is found in Ref. ’
Given the photon picture, an equivalent way to represent a coherent wave and a

sensor is through the average measured photon rate Jp , defined as the average number of

photons usefully absorbed by the sensor per unit time. From Eqn 3 This is given simply

by

% 3 c-n- U £ A

I hv hv
where h is Planck’s constant and v is the frequency. Even for the relatively weak THz
coherent sources, this flux is astronomically high. For example, a source putting out 1
pW at 600 GHz (hv = 2.48 meV) is emitting a photon rate of 2.5x10'® photon/s !

A practical issue associated with any real sensor in the THz region is that the
limited detector bandwidth does not allow for resolution of individual photons at such a
high rate. In practice, the average number of photons is given by the sensor resolution
time t, and the mean number of photons measured during this interval is
Pabs -a - Pabs

hy & -hy

<n>=J,-d=

12



where 6f is the measurement bandwidth.

C.2 Thermal Radiation

Thermal radiation results from a volume of electromagnetic modes coming into
thermal equilibrium with a heat bath at temperature T. In the terrestrial environment of
the Earth, thermal radiation is omnipresent and tends to be very strong in the THz region
because of absorption by water vapor. To get a quantitative expression for the average
power received by a sensor exposed to thermal radiation, it is best to start with the
quantum picture in which the radiation is described not by the electric field and intensity
(Poynting) vector, but rather by the occupation of each quantized electromagnetic mode.
The occupation probability is then given by the Boltzman distribution p(n) = Cexpl[-

U,/kT] where C is a normalization factor , C :Ze’un/ KT and kg is Boltzman’s
n=0
constant [1.38x10* W/K, MKS]. The mean occupation is then given by the Planck
function
1
<n(v)> = e /keT | =fp

where kg is the Boltzman constant and T is the temperature of the bath. And the mean
energy is given by
<U>=(n>+1/2)-hv=(f,+1/2)-hv

So if a sensor is pointed at a thermal source, such as a highly attenuating sky,
how much of theradiation is incident on the sensor ? The answer lies in electromagnetic
modal theory and in thermodynamics. The plane wave modes are the most convenient
for decomposing free-space radiation for analytic purposes. However, they are not
physically realizable in any receiver because of their infinite lateral spatial extent. More
convenient modes are the spatially-orthogonal set defined by the sensor antenna. These
so called lateral or “spatial” modes can be used to decompose any radiation transmitted or
received by the antenna provided they are defined properly in the antenna coordinate
system. A remarkable concept from statistical mechanics is that the Planck function is
valid for any orthogonal set of modes, no matter what antenna they apply to. So we
arrive at the result that the mean thermal energy incident from free space at frequency v
is just the energy quantum, hv, times the mean number of photons in that mode, summed
over all spatial modes

M
<U>=> f,(v)-hv

m=1
where m is the spatial mode index, and the zero-point has been excluded because it can
not couple energy on the average. Note that the maximum number of spatial modes M is
shown explicitly, representative of the fact that many THz sensors accept well more than
one spatial mode but rarely enough that the summation can be approximated by a spatial
integral as is usually done in the infrared and visible regions.

What happens if we fix the spatial mode and change the frequency ? Each
frequency in the Planck function corresponds to a unique harmonic oscillator and,
therefore, to a unique mode. In the language of lasers, the different frequencies
correspond to different “longitudinal” modes. Therefore, the total energy in a frequency

13



range Av is to be thought of as a sum over all the possible longitudinal modes for each
lateral mode

M N
<U>=> > f.(v)-hv
m=1  n=l

where n is the longitudinal-mode index. A simple way to estimate the number of
longitudinal modes is to assume that the thermal radiation is separated from the sensor
antenna by a distance L and that boundary conditions require that the electromagnetic
intensity be a maximum at both the radiator and sensor. Then the lowest frequency
longitudinal mode corresponds to a half-wavelength between the two, vy, = ¢/2L. In
open-cavity lasers and Fabry-Perot resonators, this quantity is called the free spectral
range. We also assume that the sensor is filtered so that it responds only to radiation
lying within a “passband” v, to vy +Av, and that the sensor responds only to the half of
the longitudinal modes propagating in the direction from the source. ~The number of
longitudinal modes N(v) that exist at each v is then given by

N(w) == L2
2 c/2L

And the mean electromagnetic energy is given by
Vot+tAv M

<U>= > Y NW)-hv-f(v)
vy m=l
Remote sensors are usually configured so that targets and radiators are both in
the far field of the transmit and receive antennas, and hence ¢/2L << v,, where v is the
bottom of signal passband. In this case the sum over n is quasi-continuous and we can
approximate the sum by an integral
M VotAv M L Vot+AvV

<U >:Z jfp(v)-g(v)-hv-dv:z pr(v)-hv-dv

m=l m-1 C Vo

where g(v) = dN/dv = L/c is the density of forward-traveling states.
We can now estimate the average energy density <U’> just in front of the
antenna aperture of area A,
1 M Vo+AV
<U'>=—=<U>=) — jf v)-hv-dv,
AL ; cA )"

and from Eqn 2 the ensemble-averaged power received by the sensor antenna becomes

Vo+AV
<P, >zi jfp(v)-hv-dv.
m=1 Vo

Using the coupling (Eqn 1) coefficient from the classical analysis, we find the power
absorbed by the sensor is

M VotAv
<Py, >:Z Inm(v)fp(v)-hv-dv (5)
m=l 5

Remarkably, this expression has no dependence on ¢ and no direct dependence
on the antenna area, although this is included implicitly through the number of spatial
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modes contained in the sum as we shall see in Sec. III.C. In addition, it is a
straightforward exercise in statistical mechanics to show that it can be generalized to any
form of radiation statistics between the source and the sensor, so that

M VotAv
<Pp>=) Ihv<nm(v)>~dv (6)
mooy,
M VotAv
<Py >= Inm(v)- hv<n_ (v)>-dv
m Vo
And we show explicitly the dependence of n on m since other possible radiation statistics,
besides the Boltzmann distribution behind the Planck function, may show a dependence
of occupancy on mode type.

In the THz region Eqn 5 for thermal radiation commonly gets applied under two
limiting cases — high and low background thermal radiation. In the high background
case, T > hv/kg over the entire band Av, so that €™ ;T -1 ~ hv/kgT . Let’s suppose that a
sensor is receiving thermal noise power in this limit in M spatial modes over an arbitrary
spectral bandwidth Av. Let’s also assume that the electromagnetic waves associated with
these modes are perfectly coupled to the sensor (i.e., all incident waves are absorbed
without reflection). In this case, the average received power is the product of the
average occupancy per mode <n(v)> times the energy per mode, hv, integrated over the
longitudinal modes (i.e., the spectral band). So neglecting the zero-point term

Vot+AV Vo+AV
<Py >=M [<n)>hvdv=M [kTdv=M-kT-av ()

Yo Yo

This case, called the Rayleigh-Jeans limit, is very common at THz frequencies and
below. For example, if v=1 THz and T =290 K (room temperature), we have hv = 4.1
meV, and kgT = 25.0 meV, so that hv/kT =0.164 and e™*3" =1.178, and then the
Rayleigh-Jeans approximation is accurate to about 9%. One interesting aspect of the
Rayleigh-Jeans limit is that Av can be arbitrarily large if the highest frequency in the
spectral band satisfies hv/kT << 1. So it is not limited to narrow-band sensors as is
sometimes stated in the literature.

C.2 The Special Case of Blackbody Radiation

In the special case of uniform, isotropic thermal radiation in an enclosed cavity,
the spatial modes can be counted exactly. This is a classic problem in elementary physics
and results in the following expression commonly known as blackbody radiation law.

d|S| 22’ g

dv v Cz(ehkaTS —1) ’

®)
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where Ts is the source physical temperature and ¢ is the source emissivity. This
expression, which defines the commonly used optical quantity called the frequency
specific irradiance I,, gives the randomly polarized power per unit area that crosses a flat
surface of area A when illuminated from one side by isotropic blackbody radiation. It is
very useful when a mm-wave or THz detector is exposed to thermal “background”
radiation over a much greater solid angle than the desired incident signal. The Rayleigh-
Jeans approximation then applies with the simple result (written in terms of the free-
space wavelength, c/v),
_1dR,. 27-&-kgT

YA dv s

A second form of the blackbody law is more useful when one is concerned with
calculating the thermal radiation into a mm-wave or THz receiver over a narrow solid
angle as defined, for example, by a receiver antenna. In this case, one quantifies the
power per unit area emanating from the reference surface of area A in the direction
perpendicular to the surface and over a solid angle dQ. The resulting brightness function
is given by

_ 2hviee
v Wksk_l)
Note that the irradiance derives from the brightness by integrating over a hemisphere and
weighting by the Lambert factor. And in the Rayleigh-Jeans limit one obtains the
following form
~2-g-kgTg _ 2-KkgTy

-2 - ©)

B

Note the definition given here for the brightness temperature Ty includes the emissivity,
which is not known for most sources. This is the temperature quantity most often used in
remote sensing, particularly mm-wave and THz astronomy.

Fig. 3 shows brightness curves for three temperatures, 290 K, 120 K, and 40 K.
The values T = 120 K and T = 40 K correspond to the typical sky equivalent blackbody
temperature looking up from sea level along the zenith at 100 GHz and 70 GHz,
respectively.® Also shown are the linear curves for the Rayleigh-Jeans approximation.
Clearly the latter is a good approximation at 290 K, deviating by at most a factor of 2.6 at
the highest plotted frequency of 10 THz. But as the temperature decreases, the Rayleigh
Jeans becomes progressively worse, overshooting the peak that occurs in the THz region
for temperatures roughly less than 150 K. The displacement of this peak to longer
wavelength with decreasing temperature is the famous Wien law,’

Amax T = constant = 5.098 [mm-K]

For example, the peak brightness of a source having a frequency-independent € and a
physical temperature of 290 K is 17.6 um (17.1 THz). This peak shifts to Ay, = 127 pm
(2.35 THz) for a 40-K source, and 1.89 mm (159 GHz) for a 2.7-K source. The latter
temperature corresponds to the cosmic background brightness temperature — a remarkable
discovery by radio astronomers and strong evidence for the “big bang” theory of the
universe. The 159-GHz peak also suggests that the THz region is very important for
cosmic radiative transfer — a key reason why much of the technology development in the
THz region during the past 25 years or so has been driven by the astronomy application.
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Fie. 3. Blackbodv brightness spectra in THz region for different source temperatures.

D. Fluctuations of Radiation

Although most of the principles of electromagnetics necessary to understand
THz sensors were understood prior to 1900, a few came later with the advent of quantum
mechanics. Perhaps the most fundamental principle is the occurrence of fluctuations in
the radiation. Radiation fluctuations associated with the sensing process does depend on
the spectral region and has two limiting forms: classical (electric-field thermal-noise)
fluctuations in the long-wavelength limit and corpuscular (photon shot noise) fluctuations
in the short-wave limit. In the THz region, both types of radiation noise may be exhibited
depending on the type of sensor, the type of radiation detected, and other factors. Since a
quantitative understanding of radiation noise cannot be made without the tools of
statistical mechanics and probability theory, this section starts out with a short review of
the basic concepts in these two fields.

D.1 Quantum Derivation

Quantum mechanics teaches us that the act of measuring radiation, like the
measurement of any other physical observable, is inherently probabilistic with a metric of
uncertainty or deviation given by Planck’s constant h. Even when measuring the power
from an extremely coherent source, such as a laser or high-Q cavity oscillator, one
expects a fluctuation in the measurement results depending on the type of radiation that
one is measuring. In general, this is a complicated issue in quantum statistical mechanics
or quantum electrodynamics, but the analysis becomes relatively simple in two extremes:
(1) coherent radiation, or (2) thermal, or blackbody, radiation. In these cases, we learn
that the most common description for radiation fluctuations is the Poisson statistics.
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A convenient launch point for the discussion of all radiation noise is Eqn 6,
which is generally applicable to any incident radiation of arbitrary photon statistics
provided that the fluctuations are perfectly random. The fluctuation in the incident

power around the average is then given by
M VotAv M VotAv

AP, =Py —<Py>=3" [hv-{n,(v)-<n,()>idv=>)" [hv-An,(v)-dv

where n is now to be regarded as a discrete random variable. Probability theory teaches
us that an important measure of the fluctuations is the variance, or “mean-square”
fluctuation

Vo+Av ' Vyt+AY

<(AP,)? >=<(i jhv-Anm(v)-dv)-Mz Ihv-Anm,(v)-dv)>

where m’ is a dummy summation index. In evaluating this expression we utilize the fact
that perfectly random fluctuations in different orthogonal modes will be uncorrelated, so
that only cross-products having the same mode index will survive the ensemble averaging

Vot+Av

<(AP,.)* >=< i( Ihv-Anm(v)-dv)z >

In general, this expression is quite difficult to evaluate because it requires the
knowledge of the radiation statistics in all possible modes at all possible frequencies. It is
greatly simplified by the “band-limited” assumption that the spectral width Av is narrow
enough that both hv and Av can be considered constant over the range of the integration.
One then gets

M M
<(AP,)? >~< > (hv,An, (vy) - Av)’ > =) (hv,Av)’ <[An (v > (10)

where the order of mode summation and ensemble averaging have been interchanged
since An is the only random variable.

To get the mean-square fluctuation of the absorbed power, we weight each term
in Eqn 10 by the power coupling coefficient

M M
< (APa\bs)2 >~< an : (h VOAnm (VO) ) Av)z >= an (h VOAV)2 < [Anm (VO )]2 >

Note that even after band limiting, the sum must still be carried out over n,, and n,, since
the coupling efficiency of different spatial modes in the THz region is highly variant, and
the radiation statistics may be different than Boltzmann. In the special case of only one
spatial mode, we find

<(AP,)* >=7-(hv,Av)> < An(v,) >* (11)

In the literature on remote sensing and RF signal processing this narrow Av
approximation is often called “band-limited”. In the author’s experience, this is too
often treated as an assumption rather than an approximation. Fortunately, it almost
always leads to best-case predictions, often called fundamental noise limits.
Experimental reality can only be worse, so system engineers need not be concerned about
violating the “laws of physics.” These fundamental limits will be examined in the
subsequent sections in the two special cases of purely coherent and purely incoherent
radiation.
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D.2. Coherent Radiation: Poissonian photon statistics

We start with the case of coherent radiation — so important to the wide array of
active sensors (e.g., radars) used in the RF region, and passive coherent sensors that use a
local oscillator. When quantized, this form of radiation becomes the coherent state,
whose quantum statistics are given by the Poisson distribution.
[< n> (t)]n e—<n>(t)
n!
where < n > (t) oc sin’(w,t). This state corresponds to only one electromagnetic mode

p(n) =

at frequency v, which generally has a very narrow bandwidth dv that is assumed to lie
within the sensor passband, Av. To apply Eqn 11 above, we need to calculate the
variance of the Poisson distribution — a standard exercise in probability theory. It is
found that

<(An)* >=>"(An)* p(n)=<n>
0
In other words, the variance is equal to the mean.  Substitution then yields the power
variance

M
< (Apabs)2 >~ an (h VCAV)2 < nm (VC) >

To simplify this further, we note that the use of Eqn 11 assumes that the mean
population per longitudinal mode is flat with n, which is clearly not the case with a
coherent source. But we can replace the coherent source with an effective source, flat
across Av, through the relation <n,>egr = Pinem /(hve Av) , where Pip.n is the time-
averaged incident power in the mth spatial mode. ~When integrated over the sensor
spectral passband, this always gives the correct photon flux, and leads to the power
variance

(12)

inc,m

M
<(AP,,)’ >zz N, -hve -Av-P,

In the special but practical case that the coherent power is contained in only one
spatial mode, we can immediately derive the standard deviation and RF power spectral
density

2 . . P
S, (1) = “<(A;js) . DZLV i (13)

Note that Eqn 12 represents another interesting influence of quantum mechanics on
sensor theory. Namely, fluctuations occur in the incident power of a coherent oscillator
that, classically, one would expect to be noise-free. These fluctuations occur because of
the quantized nature of the photons in the oscillation and the fact that such quantization
always brings an uncertainty when “measurements” are made. In this case, measurement
is simply the process of absorption.
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D.3 Incoherent or Thermal radiation: Boltzman Photon Statistics

For any remote sensor calculations, particularly in the THz region, one needs to
consider the fluctuations of thermal radiation. The terrestrial thermal radiation level is
quite high, and even in outer space there is a (cosmic) background radiation
corresponding to a 2.7-K thermal source. It is a basic exercise of statistical mechanics to
show using the harmonic oscillator energy function and Boltzman statistics that

<(4n)? >=<(n—<n>)>=<n’>—(<n>) =<n>(<n>+1)=f (1+f,) (14)

where fp is the Planck function. This expression has two interesting limits. In the low-
frequency, or Rayleigh-Jeans limit when hv << kT, f, >>1 and <(An)*> goes to f,*, which
is approximately (kT/hv)> . In the high-frequency limit when hv > kT, fp < < 1 and
<(An)*> goes to <n> or fp , which goes to e™*" . The first limit is generally valid in the
THz region at typical terrestrial temperatures. The second limit is generally anywhere in
the near-infrared or shorter wavelengths under the same terrestrial conditions. For
example, for T =300 K, <(An)>> aproaches <n> asymptotically just above 10 THz.

From the viewpoint of probability theory, note that the tendency for <(An)>> to
go to <n> for low photonic state occupancy is exactly the behavior predicted by Poisson
statistics, and the tendency to go to (<n>)” at high occupancy is the behavior expected
for binomial statistics, which become Gaussian in the limit of high state density. It is
then appropriate to think of thermal radiation of all types as inherently Poissonian. This
is fully consistent with the central-limit theorem of probability theory.'

Substitution of Eqn 14 into the band-limited expression for absorbed power
fluctuation of M spatial modes then yields

< (AP Y 5% Y i () (NAVY <y > (<1 > 1) = [ 7 )] hvoA ) Fo(F 1)

where the sum over modes is carried out only over the coupling efficiency. This
expression represents a remarkable effect of thermal photons called “bunching.” As the
occupancy of photon states grows past unity, there is a tendency for the fluctuations to
grow in the amplitude much more quickly . This is a ramification of the fact that photons
are really massless bosons and, as such, are correlated quantum mechanically such that
they tend to condense in a single state at a rate that grows with the population of that
state. Remarkably, such “bunching” occurs routinely in THz sensors and RF sensors, in
general, as shown in the next section. It has a classical explanation in terms of mixing
between the electric fields in the same spatial but different longitudinal modes."!

D.4 Low-Freqguency Limit: The Johnson-Nyquist Theorem

A very important result for power fluctuations in the low-frequency limit is the
Johnson-Nyquist theorem. Since in this limit hv/kT is very small, e™" = 1 + hv/kT (by
Taylor expansion) so that f, ~ kT/hv >>1, and thus <(An)>> ~ (kT/hv)* , which is a big
number at THz frequencies for T near room temperature. As done above, let’s suppose
that a sensor is receiving thermal noise power in this limit contained in M spatial modes
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over an arbitrary spectral bandwidth Av. In this case the mean-square absorbed power

from the statistical fluctuations An is given by
M

<(APy,)* >= [iﬂm](h Vo) fo(fo +1) = (hv,Av)* (KT /hv)* = [ 77, [(KTAY)?

m
which can be stated in a more familiar form as

M M
Paws = /< (AP, ) > = /an kgT -Av=<P,, >/ /an

So by comparing this to the average power of Eqn 7, we observe the remarkable result
that for one spatial mode (M=1) and perfect coupling, the rms absorbed power
fluctuation is exactly equal to the average power — a sign of Gaussian statistics.

An important consequence of the Johnson-Nyquist theorem follows from the
relationship established above between the fluctuations and the power spectral density,

which allows us to write
PRMS 2
S.(v) = = E -k, T
p(V) Av . MTm - Kg

a result of such fundamental importance to THz sensor theory, and RF systems in
general, that it is found in nearly every calculation of system-level performance.

D.5. High-Frequency Limit: Photon Shot Noise

Although RF systems are traditionally analyzed assuming validity of the
Johnson-Nyquist theorem, the THz region is exceptional because for some systems
hv can approach kT so that <n> drops to order unity. As done above, let’s suppose that
a sensor is receiving thermal noise power in M orthogonal spatial modes over a “band-
limited” Av that is narrow enough that <n> can be treated as a constant. Let’s also
assume that the electromagnetic waves associated with these spatial modes are all
equally-well matched to the sensor (i.e., all incident waves experience the same coupling
efficiency). With these assumptions, the power from the fluctuations An is given by

M
< (AP )" >= ", - (hvAv)* £, (f, +1)

which can be written immediately as an effective power spectral density

P M
SP(V)zﬁ:hVo Zﬂmv fo(fo +1)

This can be clarified somewhat by noting that the mean power incident from all spatial
modes is simply ZM f,-hv-Av, so we can re-write this as
m

S (V)zM: \/hvo’[zmnm]'Pinc'(fP +1)
P Av \/E

In the high-frequency limit, hv >> kgT, we have fp << 1 so that the fluctuations
in absorbed power become

<(APy)? >=>"n, -hv,-Av-P

inc ?

and the spectral density is given by
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M
S NPRMS _\/hvo'Pinc'zmnm
p(V) = Ay Ny

Note that in the unimodal case, this is identical in form to the spectral density for a
coherent signal, Eqn 13. It is satisfying that such a fundamental result can be derived in
two different ways. As will be explained later in Sec. V.B, this result is called “photon
shot noise”.

E. THz propagation

E.1 Atmospheric absorption

More than any other region of the electromagnetic spectrum, the atmospheric
transmission in the THz region is dominated by one factor — water vapor. Being a polar
molecule with a nonlinear molecular orientation, water displays a strong absorption line
for nearly all of its rotational modes. Most of these modes and their optical properties
have been conveniently catalogued over the past few decades into a database called
HITRANDO96. Started by the U.S. Air Force Geophysics Laboratory, the database contains
the kinetic coefficients for over 1 million atomic and molecular lines of importance to
atmospheric radiative transport between the microwave and visible regions. The set of
water vapor lines occurring between 100 and 1000 GHz is shown as a “stick” diagram in
Fig. 4. The ordinate is a line-strength coefficient for the Voight model of atomic
absorption — a model that combines the essential characteristics of the Lorentzian model
of collisional broadening with the Gaussian model of Doppler broadening.

Note that the spectral region in Fig. 4 contains 228 spectral lines. Perhaps the
best known of these is the 183 GHz line, which has been used by NASA and other
government agencies as the basis for space-based atmospheric-sounding radiometers.
Remarkably, many of the water lines that occur at higher frequencies approaching 1 THz
and beyond are orders-of-magnitude stronger than the 183-GHz line.

Given the water lines and a model of atmospheric pressure and temperature, one
can compute the transmission over chosen paths using a radiative transport code. A
popular tool over the past 20 years has been FASCODE, also developed by the U.S. Air
Force. In the late 1990s this was converted to a Windows environment.'”” An example
transmission spectrum up to 2.0 THz is plotted in Fig. 5. This was computed over a 1 km
path length at 1 atm of pressure, 296 K temperature, 60% relative humidity, and a slant
angle of 5°. The strongest lines of Fig. 4 are now pressure broadened, and even stronger
lines occur above 1.0 THz. In places where neighboring lines are in close proximity, the
absorption remains very strong between the features, creating what some have called the
“THz pea soup.”

An important comment about the HITRAN96 database is that all of its
absorption lines apply to monomeric water. At 1 atm pressure and high humidity, it is
known that water behaves in a more complicated fashion whereby individual molecules
interact to form dimers, trimers, etc. This is, of course, the physical basis for
precipitation so it is not surprising that it is occurring at high humidity. The effect of
dimerization is an increase in the number of lines in Fig. 4 and a further thickening of the
absorption spectrum in Fig. 5.
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Fig. 4. Stick diagram of water vapor absorption lines between 0.1 and 1.0 THz (from
HITRANY6 database). Labels denote the center frequency of 12 strongest lines.

E.3. Effect on THz signals: Radiative transfer

Given the existence of a molecular absorption and a pressure at or near 1 Atm,
the density of molecules is generally large enough that the interparticle separate is less
than a wavelength in the THz region. Hence, the attenuation from absorption can be
approximated through the exponential fall in intensity predicted by the Lambert-Beer law

|
TETt=eXP(—p-GA-Z)

where I is the incident intensity, I; is the transmitted intensity, p is the particle density,
G, 1s the absorption cross section, and z is the path length.

Of course, absorption is concomitant with energy transfer, so we expect an
absorbing medium to also contribute radiation according to the principle of detailed
balance. The overall radiative transfer has a well-known solution when the source body
of thermodynamic temperature Tg subtends a solid angle Q with respect to the sensor and
the intervening medium is much broader than ). Because brightness is the quantity
conserved over a fixed solid angle, it is the convenient radiative function and is given at
the sensor receiver by"

BR =T (V) BS + (1-‘5) BM
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Fig. 5. (a) Transmission of atmosphere through 1 KM of path as computed by PcLnWin.
(b) Magnified view of the region around 420 GHz, which will be used later in the
chapter for an active sensor simulation.

where Bg and By, are the brightnesses of the source and medium, respectively. Again, for
terrestrial remote sensing the Rayleigh-Jeans limit is quite accurate in the mm-wave and
THz regions, so that from the definition of brightness Eqn 9, we can write

Tr=1(v) Ts + (1-1) T
Note that if the background and medium temperatures are in thermodynamic equilibrium,
TS = TM and we find TR = Ts.
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E.3. Atmospheric scattering

In the millimeter-wave and THz regions, the absorption mechanisms in the
atmosphere are known to be strong, particularly from water vapor. In principle, one also
expects attenuation to occur also through scattering. Because of the much longer
wavelength compared to the visible or infrared, one would expect the THz scattering to
be much weaker from the common, micron-scale airborne particle types, such as fog, ice
grains, dust, pollens, etc. However, there are conditions, such as precipitation, in which
scattering should play an important role. Unfortunately, little or no experimental data
exists on scattering under these conditions owing to the lack of calibrated THz
instrumentation and the general difficulty in distinguishing absorption from scattering
effects.

A general statement can be made that if the scattering is strong enough to
compete with or dominate the absorption. In this case, the simple “rectilinear”
expression given above should probably be abandoned and a more sophisticated radiative
transfer carried out. To see why, suppose that a ground-based sensor and airborne source
are separated by a rain cloud thick enough that the attenuation by scattering is
comparable to that by absorption. Under this condition, the raindrops will almost
certainly reflect significant radiation into the sensor that originates from the ground
below. The reader is referred to two excellent texts that address the scattering problem in
great detail.'*"

F. Measurement of THz power

An essential task for the calibration of detectors and qualification of sources is
the accurate measurement of power and frequency. Measurement of power in the THz
region is a surprisingly difficult task, particularly at microwatt levels and below. As in
the lower millimeter-wave region, thermal detectors are often the most accurate detector,
although not the most sensitive. This is because of their relative simplicity and ability to
efficiently absorb the radiation. The practical requirement on any thermal detector is the
sensitivity be good enough to detect the low (<< 1 uW) THz output that occurs when a
new source is first being developed.

Perhaps the best candidate thermal detector for room temperature operation is
the Golay cell — a venerable device that combines absorption of radiation by a thin
metallic film and transfer of the heat into a gas.'® The expansion of the gas moves a
membrane on which is mounted an optical grating or similar component. The motion of
the grating diffracts light between a source and a photodetector, causing a large change in
output voltage of the detector. In the author’s experience, the Golay cell is very uniform
in spectral response, being limited only on the long-wavelength end by the entrance
aperture. For the typical 3-mm-aperture Golay cell, this long-wavelength cutoff is
roughly 100 GHz. For frequencies around 1 THz, the NEP is roughly 2x10™"° W-Hz " .
For the typical detector bandwidth of 10 Hz, the minimum detectable power is thus ~1
nW.

The best candidate for cryogenic operation is the composite bolometer operating
at 4.2 K (liquid helium)."” This device consists of a thin absorbing film in an integrating
cavity on which is mounted a small Si (or perhaps some other semiconductor) thermistor
having a high coefficient of thermal resistance, (1/R) dR/dT. The key advantage of
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cryogenic over room-temperature operation is reduction in the thermal noise while
maintaining high responsivity. Around 1 THz the 4.2-K Si composite bolometer can
provide an optical NEP of roughly 1x10"* W-Hz . So in the typical bandwidth of 10
Hz, the minimum detectable power is ~10 pW. The disadvantage of the composite
bolometer compared to the Golay cell is uniformity of response. Because of standing
waves that can occur in an integrating cavity, the spectral variation in responsivity can be
a factor of ten or more — a fact not appreciated by many people in the field.

[l Coupling of THz Sensors to Free Space

A critical aspect of any remote sensor is “connecting” THz radiation between
the various signal processing components and devices, and “coupling” the THz radiation
to and/or from the external medium in which the target is embedded. The connecting
task, generic to all electromagnetic sensors, is carried out with THz transmission lines.
The coupling is carried out with various types of antennas.

A. Routing between devices: THz Transmission Lines

THz transmission lines are usually scaled-down versions of microwave and
millimeter-wave transmission lines and, as such, are relatively simple to analyze and
design. The two most common types are metallic waveguides and coplanar-strip
transmission lines.  The former type is popular because if fabricated with high
conductivity metal (e.g., oxygen-free copper) and smooth inside walls, it can display high
bandwidth and low insertion loss. The latter type is popular because if fabricated on a
dielectric or a high-resistivity semiconductor (e.g., quartz or semi-insulating GaAs), it
can be integrated with THz devices such as superconducting tunnel junctions or Schottky
diodes. Various types of scaled-down optical structures have also been investigated as
THz transmission lines, such as dielectric waveguides. But because of high insertion
loss, inability to integrate with devices, or both, these structures have not gained
popularity and will not be addressed in this article.

A.l. Metallic wavequides

Perhaps the most common THz transmission line of all is the rectangular or
circular metallic waveguide.  The former is generally made up to about 300 GHz
according to the “WR-N (Waveguide Rectangular) standard whereby the width-to-height
ratio is approximately 2.0 and N is the width in units of 1/100™ of an inch. For example,
WR-3 has a width W= 0.03 inch and a height H = 0.015 inch. According to waveguide
propagation theory, the cut-off frequency of the fundamental (TE,y mode) is then fc =
¢/(2W) =197 GHz. WR-3 is about the smallest rectangular waveguide that is available
commercially. Smaller sizes are made and follow the WR standard but are generally only
made in a custom fashion.

Circular waveguide is also popular, primarily because it is easier to fabricate by
simple machine-shop (e.g., milling) techniques. The fundamental mode is the TE;
whose cut-off properties are given by 0= Jy(kr) where k = w/c is the wavenumber, r is the
radius, and J; is the Bessel function of the first kind and order zero. The first “zero” of
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this Bessel function is Jo(1.841) = 0, so that the cut-off wavelength in terms of diameter is
simply (n/Ac)d = 1.841. This yields Ac = nd/1.841, or fc = c/Ac = 1.841c/nd. For
example, a circular waveguide having a diameter of 1 mm (a convenient size to make by
conventional machine-shop techniques) displays a cut-off frequency of 175.8 GHz.

At frequencies well above the cut-off of the fundamental mode in either
rectangular or circular waveguide, higher-order modes begin to propagate. For any
uniform waveguide, these modes obey the fundamental relation for the cutoff frequency
in terms of the width (a) and height (b) of the waveguide:

v = cy/(m/2a)* + (n/2b)’ (15)

An interesting use of this expression is the to plot the number of modes N(v) that can
propagate at any frequency as a function of frequency above cut-off. Such a curve is
easily generated by a spreadsheet with sorting capability, as exemplified later in Sec.
1L.D.

B. Coupling to free space: THz Antennas

A critical aspect of any remote sensor is the coupling to the external medium in
which the target is embedded. Since the external medium is usually free space, the
component that carries out this coupling is traditionally called the “antenna”. As in other
regions of the electromagnetic spectrum, THz antennas generally fall into one of two
categories: (1) wire antennas, such as dipoles, and (2) aperture antennas, such as
feedhorns. The distinction between these two is a key topic of many textbooks and will
not be addressed here.'"® What distinguishes the THz region from microwave bands and
below is that wire-like antennas are generally fabricated on substrates and feedhorns are
often operated overmoded, as described further below.

B.1. THz wire-like antennas

Perhaps the first wire-like antenna to be used successfully at THz frequencies is
the traveling-wave, unbalanced, linear (“cat-whisker”) antenna. It consists of a long wire
(relative to a free-space wavelength) connected at one end to a ground plane (or a device
over a ground plane) and at the other end to a feed port. To force the antenna pattern into
one direction of space and thereby improve the directivity, the wire is mounted in a
corner-cube reflector.’”  Historically, because of its broadband nature and small
reactance, the cat whisker antenna played a key role in the development of THz
technology as the demonstration vehicle for Schottky diodes, resonant-tunneling diodes,
and other THz semiconductor devices.

The drawback of cat-whisker corner-cube antennas was and is the difficulty in
their packaging and incompatibility with integrated circuit techniques. Therefore, during
the 1970s and early 1980s, significant research and development was put into printed-
circuit antennas, also called planar antennas.”® A key key driver for this development
was the success of one type of PC antenna — the microstrip patch — at microwave
frequencies. By this time the utility of the patch was well known, particularly its
amenability to two-dimensional arrays. But researchers found that the patch was prone to
inefficiency at THz frequencies because of its propensity to launch substrate modes no
matter how thin the substrate.”’ This led to the exploration of other antenna types,
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Fig. 6. Real and imaginary parts of the driving point impedance of a planar
full-wave dipole antenna

including broad-side dipoles, slots, and various self-complementary antennas. End-fire
planar antennas were also investigated, particularly linearly and exponentially-tapered
(i.e., Vivaldi) antennas.*?

Amongst the first planar antennas to be used experimentally were the class of
self-complementary antennas, such as the bow-tie and the logarithmic spiral. These are
antennas that after some rotation operation less than 2w become their own Babinet
complement. For both types the required rotation angle is just n/2. To achieve this in the
log spiral, the edge of each arm emanates out on a locus given by roe®’ and each edge is
rotated from its nearest neighbor by 90°. All self-complementary antennas display
special electromagnetic characteristics, namely a driving-point impedance that is real and
independent of frequency over a wide operational bandwidth (determined by the
minimum and maximum lateral extent of the self-complementary structure). For a three-
turn spiral, this bandwidth can easily by one decade. The value of the driving-point
resistance is then given by

Ry = 60m/(gcr)"
where . is the effective dielectric constant given by (1+ ¢,)/2. For GaAs, & = 13.0 so
that Ry = 72 Q. Another remarkable feature of self-complementary spirals is their
insignificant load susceptance B over the bandwidth.

For some devices a higher antenna driving-point resistance is desirable. A good
choice is a resonant planar antenna, such as a planar dipole or slot. The driving-point
impedance of a planar dipole on a semi-infinite GaAs half-space is shown in Fig. 6.”
Note that its resonant resistance is 250 €2 - over three times greater than that of the self-
complementary spiral.

Coupling wire-like antennas to free space

Although planar antennas offer a large variety of pattern and impedance
characteristics, they do not necessarily solve the primary problem behind patch antennas
— substrate modes. For example, a planar dipole on a GaAs substrate exposed to air on
the back side will also support at least one substrate mode and thus will suffer from
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inefficiency. The problem is not so much the antenna type as it is the fundamental cause
of substrate modes, which is the total internal reflection at the interfaces of the substrate.
Realizing this problem, various techniques were explored to mitigate substrate mode
generation and improve efficiency. Probably the most successful is to couple the
radiation through the substrate using a back-side hemispheric lens whose dielectric
constant is close to that of the substrate. =~ For device integration purposes, planar
antennas are often fabricated on quartz or semi-insulating GaAs. Therefore, a good
choice for the lens material is quartz or a low-cost, high-resistivity semiconductor, such
as float-zone silicon.

The common application of the lens-coupled antenna has been to locate a THz
device, such as a mixer or direct detector diode, at driving gap of the planar antenna, and
locate the driving gap at the center of curvature of the lens. If the lens is thick enough so
that the spherical surface is in the far-field of the antenna, then all the radiation from the
antenna reaches the spherical surface at normal incidence and passes in to free space with
a reflection coefficient of (n.-1)%(n.+1)* . This is a great improvement over the slab
substrate, but yields a highly diverging beam from planar antennas having large beam
solid angle. In such cases, a common practice is to locate the antenna behind the center
of curvature at a point where the radiation will be refracted in the forward direction. If
the hemispherical surface and set-back are fabricated in the same dielectric material, the
resulting optic element is called a hyperhemispherical lens.

If n is perfectly matched to ng and the antenna is located behind the center of
curvature by a distance r/n, then the lens focusing is aplanatic. This is a property from
geometric optics which states that all rays from a given point in the object plane (in this
case, the planar antenna) are refracted to a parallel bundle after the lens, as shown in Fig.
7. Clearly, most planar antennas can not be accurately analyzed by geometric optics. A
treatment of the focusing problem by modal (Gaussian-beam) analysis shows that the
optimum set-back is just short of r/n, as might be expected.” This point is addressed
further in Sec. IIL.E.
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B.2. THz aperture-like antennas: Dishes, Lenses, and Feedhorns

Parabolic dishes: the diffraction limit

Perhaps the most universal of the aperture antenna types is the parabolic dish — a
two-dimensional surface consisting of a parabola rotated 360° about one (optical) axis.
The surface of the paraboloid is generally made from a high-conductivity material, such
as a good metal. Parabolas are just as effective at THz frequencies as in the RF bands.
And like their application in RF systems, parabolic dishes tend to get used as the primary
reflector in the front end of THz sensors. This is because they are straightforward to
design and manufacture, and display relatively predictable performance in terms of
radiation coupled to free space. Their performance is much more easily predicted than
practically any wire-like antenna.

To quantify the performance, we imagine a parabolic dish of diameter D lying at
the origin of a spherical coordinate system whose origin is located at the center of the
dish and whose polar axis coincides with the axis of symmetry. Then, as with any wire-
like antenna, the electric field transmitted by the dish at a far distance from the origin will
tend to display a modified spherical-wave form

E(r,0,4) <\F(6.9) (16)

where k is the free-space propagation constant (= w/c = 2n/A) and F is the (normalized)
intensity pattern function, F = [S(r,0,0)|/Sp.x Where S is the Poynting vector and Sy, 18 its
maximum magnitude, wherever in space that occurs. The range of r for which Eqn 16 is
valid is called roughly the “far-field limit.” Parabolic dishes, like all wire-like antennas,
display a limited region in space where F (0,0) is large and other regions where it is
negligible, in contrast to isotropic (point) sources. Therefore, a useful metric is the
directivity

e—jkr

D= 4;{“ F(, ¢)ng =4r/Q,

ar
where Qg is the beam solid angle. Conceptually D defines how much greater the
intensity is at the peak of F compared to the isotropic radiator emitting the same total
power, for which Qg =4mand D = 1.

Like other aperture-type antennas used in the mm-wave and THz regions,
parabolic dishes generally have a pattern function that displays a predominant, symmetric
or quasi-symmetric peak (i.e, “major lobe”) in a single direction of space 0p, ¢p. In this
case it is useful to approximate F(0,0) by an equivalent spherical cone or sector having a
symmetry axis along 0p, ¢p , and polar angular width (or widths) equal to the full-widths
at the half-maximum points B(¢) of the real major lobe. And throughout the cone or
sector, F(0,0) =1.0 If the pattern has perfect conical symmetry (generally true for

parabolic dishes and lenses, and often the design goal for feedhorns), then one finds
20 B2

Q, = [[F(0.4)dQ~ [dg [sin0-d6 = 22[1 - cos(B/2)]

and
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Do 2 | (17)
1—cos(f/2)

In the limit of a narrow “pencil” beam where B is small (<< 1 rad), one can Taylor
expand the denominator, yielding

_16
~ F
Note that in most books make the simpler approximation Qp ~ B, so that D ~ 47/p* - a
less precise expression but one easier to remember.

D (18)
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The characterization of the parabolic dish then reduces to knowing the -3-dB
full-width the main lobe. This is where dishes and some other aperture antennas, such as
lenses, are simpler to analyze than wire-like antennas because they are often physically
large in lateral dimension compared to a free-space wavelength and have simple
boundary conditions. In this case, one can approximate the radiation pattern with scalar
diffraction theory - a formalism that provides an approximate solution to the vector
electromagnetic wave (Helmholtz) equation for radiation passing through the aperture.”
The scalar formalism results in the famous Kirchoff-Fresnel integral which, in essence,
approximates the radiation pattern as the superposition of point sources filling the
aperture, each point source radiating a spherical wave. A key issue in using this integral
is the amplitude distribution of the point sources inside the aperture. In the special case
of uniform illumination, scalar diffraction predicts a far-field pattern that goes as »°

, [J,(kao)T
|F@,0)| m[kae }

where J; is the ordinary Bessel function of 1* order, a is the radius, and 0 is the angle of
the measurement point relative to the optical axis. Historically, this function has
generally been avoided or grossly approximated in textbooks because of its lack of
tabulation. With modern computation tools (e.g., Excel, Matlab), it is simple to compute
and plot, and yields much useful information.

Like the more familiar sinc [sin(x)/x] function, J;(x)/x peaks at x = (0. But its
peak value is 0.25, not 1.0 as for the sinc(x). The first null occurs at the first zero of the
J; function, x = 3.835 or 6 =3.835 A/(2na) = 0.610 A/a. A secondary peak of magnitude
0.00437 occurs at approximately x = 5.14, corresponding to 6 = 0.818 A/a. Note that this
secondary peak (first sidelobe) has a value of 0.0175 or —17.6 dB relative to the main
lobe. This is to be contrasted to the more familiar value of —13.2 dB for the relative size
of the first sidelobe for a square aperture of uniform illumination.

The undulating radiation pattern of Fig. 8 and the associated minima and
maxima, are collectively associated with diffraction — a phenomena that tends to be as
important at millimeter-wave and THz frequencies as it is in the lower RF bands. This is
because the size of components, such as parabolic dish antennas, tends to shrink with
operating wavelength, making the important ratio A/a approximately constant. For non-
circular antennas or other components, this ratio gets replaced by A/d where d is the
maximum lateral extent of the component.

From an antenna-design standpoint, the most important feature of the diffracted
radiation pattern is often the —3-dB beam width. From the uniform-illuminated case of
Fig. 8, the —3-dB point is at x = 1.616, so that the beam full-width is given by
=26 =3.232 2/(2ra). This can be substituted into Eqn 17 or approximated by Eqn 18
if the dish is large enough that f << 1 rad. In this case D ~ 16/p* = [16(21a)*]/(3.232-1)*
=1.53 -[4nA/A?] where A = mta’ is the circular area . The last quantity arises frequently in
the analysis of aperture and wire-like antennas and so has a special place in the
electromagnetic field as the maximum or “diffraction-limited” directivity

Dinax = 41 A/ (19)

The circular-aperture example shows this expression is not precise. But it has long been
used as a metric in component and system engineering, and is often assumed to be more
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precise than it really is. This is because it is so useful, applying also to wire-like antennas
when the physical aperture is replaced by the “effective” aperture Ay .

Another useful result that comes out of scalar diffraction theory is an estimate of
the far-field-limit criterion. For the generic aperture antenna of uniform illumination, or
a wire-like antenna, this is given roughly by the range expression

r>2d%/A (20)

where d is again the maximum lateral extent. Note, however, that this expression is even
rougher than the diffraction-limited directivity, and r might have to be much greater than
this, perhaps up to 10d*/A, depending on the exact aperture shape and boundary
conditions.*

Given Eqns 19 and 20 one can quickly estimate the maximum directivity and
far-field criterion as a function of frequency. Those accustomed to dealing with antennas
in the microwave region are often impressed with how high the directivity can be in the
THz region per unit aperture. For example, a round dish of 1-inch diameter operating at
1 THz (A = 0.3 mm) has a “diffraction-limited” directivity of just over 7x10* , or 48.4 dB
! By the same token, as the frequency goes up one must go out to an increasingly
further range to apply the far-field criterion. For this same dish the far field criterion
becomes r > 430 cm = 14.1 ft, which seems surprisingly far considering the size of the
aperture.

If a THz antenna is separated from its target by a distance less than indicated by
Eqn 20, then the far-field form of the electric field can not be approximated by Eqn 16.
An important consequence of this violation is that the magnitude of electric field at a
given O can not be assumed to fall as 1/r or, equivalently, the intensity can not be
assumed to fall as 1/r%. This is a motivation for the derivation and application of the
Gaussian-beam solutions to Maxwell’s equations.”’ Such modes are commonly applied
to the free-space radiation transmitted or received by THz antennas, and are addressed in
Sec. IILE.*

An interesting aspect of parabolic dishes in the THz region is the limitations
imposed by surface roughness or nonparabolicity. Up to approximately 100 GHz,
parabolic dishes can be made very accurately by simple mechanical means such as
molding. But in the THz region, a surface error of just a few thousandths of an inch can
impact the performance of the dish. So surface machining and polishing becomes
necessary to achieve diffraction-limited directivity — a requirement well known to people
from the optical end of the spectrum. Surface machining has been scaled up to produce
large area (10-m diam) parabolic dishes operable up to at least 600 GHz in astronomical
observatories.””  Even so, a THz parabolic dish is far easier to fabricate than one in
visible or IR regions where submicron-scale smoothness is required.

Lenses

Almost since the beginning of the THz field, researchers have recognized that
the wavelengths in this region become a small fraction of the diameter of common-sized
lenses and other transmissive optics. For example the free space wavelength at 1 THz,

1 = 333 micron, is 75 times less than the diameter of a 1-inch lens. In fact, lenses often
are used as a paradigm for the field of “quasi-optics” — a broad term that means roughly
the free-space control of THz (or lower frequency) radiation by conventional optical
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elements.  This does not imply, however, that optical techniques for analyzing the
propagation are a good approximation with THz lenses or mirrors. To get acceptable
accuracy, diffraction effects usually must be accounted for either by the uniform-
illumination or Gaussian-beam approximations (Sec. IIL.E).

An advantage of transmissive optics in the THz region compared to the visible
or infrared is that they can be made from plastics — perhaps the best material choice of all
from the perspective of manufacturability and low-cost. Good examples of plastics
having low-enough loss and good manufacturability for lenses and windows are Teflon,
polyethylene, and TPX. All of these are readily machined, and simple machine-shop
surfacing methods leave small enough tool marks and shallow-enough scratches to cause
negligible scattering of electromagnetic radiation in the THz region.

Feedhorns

Probably the best performance of all antennas up to about 1 THz is displayed by
well-designed feedhorns. Through the microwave and millimeter-wave bands, pyramidal
feedhorns are very popular because of their compatibility with rectangular waveguide and
good control over the beam pattern. But in the THz region, rectangular-waveguide
standards are not prevalent and, because of size scale, it becomes much easier to fabricate
conical feedhorns rather than pyramidal ones. Unfortunately, conical feedhorns are not
as flexible to design because of their one fewer degrees-of-freedom. They are prone to
inefficient and asymmetric patterns that can not be easily designed by analytic means
because of their required representation by special (Bessel) functions.

With the advent of full-wave numerical simulation tools, it has become possible
to design THz conical feedhorns with excellent antenna characteristics. One of the most
popular numerical codes presently available— High Frequency Structure Simlator (HFSS)
— is based on the method of finite elements. Given such a simulation capability, there are
several design tricks that can produce excellent patterns from conical feedhorns. One
such trick is to add a step in the throat region to excite just enough of the first higher-
order (TM;;) mode to cancel the sidelobes in the fundamental (TE;;) mode.*® A second
trick is to fabricate grooves down the length of the conical horn to excite the mode
exclusively. The resulting design, called a scaler feedhorn, produces outstanding beam
patterns with practically no sidelobes — arguably the best possible pattern from any
antenna in the THz region. Unfortunately, scaler feedhorns are difficult to design and
even more difficult to fabricate.

As more and more modes begin to propagate in the circular waveguide to which
the feedhorn is connected, the radiation pattern begins to resemble the ray transfer
function of a condensing cone, sometimes called a light cone. In other words, the
feedhorn begins to follow the laws of geometrical optics. In the 1970s infrared
researchers began investigating other possible condensing cone tapers besides the
simplest (linear) case. For example, Winston discovered that a dual-parabolic taper can
produce a transfer function near the ideal (step) function.”’ Not surprisingly, the Winston
cone concept works very well at THz frequencies provided that the throat of the horn is
heavily overmoded.
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C. The Number of Modes: Antenna Theorem and Interpretation of Planck’s
Law

Whether the sensor is collecting coherent or thermal radiation, the number of
spatial modes collected is an important issue from a system standpoint, is difficult to
estimate, and is even more difficult to measure. In the limited space here, we only
provide an approximation.

The approximation technique is based on a result from electromagnetic theory
called the antenna theorem, which derives from two separate definitions of directivity
given above,

_4mA_Ar Q1)

Dmax
2,

Since Dy is, in principle, the maximum possible value of the directivity as predicted by
diffraction theory, then the corresponding Qg is the minimum possible beamwidth and,
therefore, corresponds to the fundamental spatial mode of the antenna. So if we imagine
rotating the Qg beam in spherical coordinates to just fill up surface of a sphere, it would
take approximately 41/Qp rotations to do this. And since Qg is the fundamental spatial
mode, D, represents the number of spatial modes required to fill the entire sphere. Of
course, rarely, if ever, is a THz sensor designed to operate over an entire sphere. More
often, they are designed to respond to a much smaller solid angle, called the field-of-
view, Qroy. And the number of spatial modes then becomes

M = Srov (22)

QB

Note that the correspondence represented by Eqn 21 is often stated as the
following “antenna theorem”

A-Q, > 2
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Conceptually, this means that if the antenna is diffraction-limited, the product will reach
its minimum value of A%. But it reminds us that practical antennas have electromagnetic
or mechanical limitations which usually cause the fundamental beamwidth to grow
beyond this minimum value.

Ilustrations are given in Fig. 9 for the Qp and Qroy for the two most common
millimeter-wave and THz coupling structures: feedhorns (or coupling cones), and quasi-
optical components (e.g., lenses). In both cases, one can always define the beam angle
Qp. For example, for the simple round lens, it is predicted from scalar diffraction theory
0 = 2.44 A/D, and Qg ~ (6}3)2 if 65 << 1. For the feedhorn or collection cone, there will
always be a fundamental electromagnetic mode defined as that mode collected by the
sensor at the maximum possible wavelength. Generally, this mode and its cutoff
wavelength are defined by the dimensions of the throat of the feedhorn or cone.

An interesting application of the antenna theorem comes in a practical
interpretation of Planck’s radiation law for RF and THz systems. We can now re-write
Eqn8(e=1) as

dP  A-27zhv° 27A hv 27 hv

E - CZ(ehv/kBT _1) - /12 (ehv/kBT _1) :Q_B(ehv/kBT _1)

where Dy is the diffraction-limited directivity of the element of area A. We now
recognize the factor 21/Qp as the number of spatial modes coupled into an antenna whose
orthogonal-mode beamwidth is Qg. So the Planck law is consistent with the antenna
theorem . Of course, rarely, if ever, is a THz sensor designed with a hemispherical field-
of-view. So a more practical form of Planck’s law is simply

dP Qg hv
dv  Q, (™" -1

This is particularly useful for collecting cones, integrating cavities, and other antenna-like
structures.

D. lllustrative Examples of Modal Function

For WR-10 rectangular waveguide, we can compute the number of modes at any
frequency knowing its dimensions (0.10 inch wide x 0.05 inch high) and Eqn 15. The
number of modes is found by incrementing m and n, sorting by the cut-off frequencies
and then counting all entries including the degenerate cases. The resulting distribution is
plotted in Fig. 10. Clearly, it is approaching a quadratic dependence as the frequency
increases. For analytic purposes, it is very useful to fit the curve to the following form,
M = Int(v/vg)® +1
where Int is the integer function (rounding down) and vy is a fit frequency somewhat
greater than the lowest modal cut-off frequency of 59 GHz for the TE;y mode. The fit

36



100

WR-10 Waveguide

w0 | 5
i n®
Exact\ [
.-
m--
;T T———— Approximation

Number of Spatial Modes

—~
QD
=
=
n

10 100 1000

10000 ¢

F Golay Cell /
1000 E

100 E

Number of Spatial Modes

10

(®) 1 —_—
100 1000 10000

Frequency [GHz]

Fig. 10. Density of electromagnetic spatial modes for (a) WR-10
waveguide and (2) Golay cell having a 6-mm diameter (circular) aperture.

function is shown in Fig. 10(a) for vg = 85 GHz.

For the lens-coupled Golay cell, we use the definition given in Eqn 22 and
assume a cell diameter of 6 mm, and a lens diameter and focal length of 2 inch,
respectively. The resulting modal distribution vs frequency is shown in Fig. 10(b).
Because the analysis does not account for cut-off effects, the curve is perfectly quadratic
and is fit very well by the same fit function as above but with vg = 0.125 THz.
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E. Gaussian beams

E.1l. Gaussian-beam methodology

A key assumption behind the circular-aperture diffraction results in Sec. I1I.B
from scalar diffraction theory is that the illumination across the aperture is uniform. This
is a good assumption in some circumstances such as predicting the power collected by a
receive antenna from a distance source whose pattern beam-width measured at the
receive antenna is much larger than the lateral extent of the receive antenna. But there
are other times when the uniform-intensity assumption is inaccurate, such as in
describing the radiation transmitted or received by a fundamental-mode feedhorn.

One of the useful features of scalar-diffraction theory is its ability to predict
what happens to the radiation once the uniform-illumination assumption is violated. For
example, if the aperture is circular and if the illumination distribution is a Gaussian in the
lateral plane with respect to the axis of symmetry, then the radiation pattern is also
Gaussian, at least in the far-field limit. Intuitively, this makes sense since in this limit the
Fresnel-Kirchoff integral reduces to a Fourier transform, and the Fourier transform of a
Gaussian is always a Gaussian. It turns out that this result, commonly known as the
Gaussian beam pattern, also applies to the near-field behavior with increasing accuracy as
d/A increases far beyond unity.

Although the Gaussian-beam result was known early in the history of
electromagnetics, it was apparently not fully appreciated until the advent of the laser.
The gain media in gas and solid-state lasers typically have very large values of d/A, and
generally emit much greater intensity at the center than at the lateral edges. A useful
way to analyze the Gaussian behavior is to model the gain medium with a quadratic
complex refractive-index lateral profile.*? The resulting intensity, described
mathematically below, displays a Gaussian dependence on the lateral (r in cylindrical
coordinates) dimension, and azimuthal symmetry about the propagating (z) axis.

In the mm-wave and THz region, the applicability of Gaussian beams is less
obvious on first glance, but becomes plausible when one considers the coupling between
antennas and circuits. MM-wave and THz antennas are often operated in their
fundamental spatial modes for which the radiation intensity is maximum but rather
slowly varying along the propagation axis. Then at the characteristic angle 6 =~ /2 away
from the axis the radiation begins falling rapidly in the lateral directions, with some
radiation inevitably occurring at larger angles in the sidelobes because of diffraction. All
these properties except the undulation of the sidelobes are described rather well by a
Gaussian function vs r with perfect azimuthal symmetry about the z axis. This is the so-
called fundamental Gaussian mode. Other possible symmetric functions, such as a sech
or Lorentzian, are either too steep about the propagation axis or decay too slowly at large
angles.

MM-wave and THz antennas are often operated in fundamental mode for
practical reasons. One reason is that the fundamental mode is generally the most
symmetric and has the smallest beam width of all possible antenna modes. Another
reason is that the devices and circuits to which the antenna is coupled are designed for
their own fundamental mode, be it in high-frequency transmission line or waveguide.
This is usually the easiest and most effective way to design mm-wave and THz active
devices and circuits, but it generally makes the coupling between the circuits and antenna
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efficient only for one antenna mode, usually the fundamental mode. These
considerations break down, of course, if none of the electronics or components coupled to
the antenna need to process radiation at high frequencies. Such is the case, for example,
in mm-wave and THz bolometers which merely rectify any incident power absorbed.
Hence, bolometers can be and often are mounted in multimode antenna-like structures,
such as integrating cavities, to maximize the sensitivity and spectral bandwidth.

Finally, it is important to realize that any Gaussian beam is just one of an infinite
number of modes forming an orthonormal TEM basis set. This basis set is as applicable
to representing arbitrary radiation in free space as any other orthonormal basis, and must
comply with the antenna theorem defined above in Sec. III. C. Each function of the basis
set differs from the others in the degree of azimuthal symmetry about the propagation
direction. As alluded to above, the fundamental or TEM,, mode is the only one with
perfect azimuthal symmetry, and is therefore the most popular and useful in solving free-
space propagation problems in mm-wave and THz systems.

E.2. Gaussian-beam formulation

One benefit of the Gaussian-beam approach is it tends to add improved accuracy
in mm-wave and THz design with only a minor increase in difficulty. This is because
Gaussian beams, much like Gaussian distributions in probability theory, behave well
mathematically under system-level operations. Given a propagation direction along the
z axis, the fundamental TEM,, Gaussian beam is given in cylindrical coordinates (r,0,z)
by
a()o)exp[—rz/a)z]-exp[—j(kz—¢+kr2/2R)] (23)

E(r,z)=E,
w(Z

where E; is the maximum electric field amplitude, n is the intrinsic impedance of the
medium of propagation, ¢ is a phase constant, o is the radius where the intensity drops by
e! relative to the on-axis intensity (i.e., the “spot size”), or “beam waist,” and R is the
radius of curvature. Fortunately, all of these quantities are inter-related through simple
algebraic expressions:

2
o' (2) =} 1+(”ZZJ
T

R(z)=z- 1+(”""°J (24)
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Fig. 11. Gaussian parameters: (a) spot diameter (2-w) (b) radius of curvature,
and (c) on-axis intensity for two typical mm-wave or THz situations: (1) A =1
mm, P =1 mW, minimum spot size at beam waist = 2.5 mm; (2) A = | mm, P
=1 mW, minimum spot size at beam waist = 50 mm.

From these expressions it is clear that »(z) > w, so that ®, is the minimum spot
radius and the maximum electric field occurs in the plane of constant z where m(z) = w,
which defines the “beam waist.” In this plane the following simple form of the
electromagnetic intensity is valid:
2
I(r)= & exp[-2r*/w; ]
2n
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where 1 is the intrinsic impedance of the propagation medium. Because the Gaussian
integral is analytic if taken from r = 0 to oo, the following useful relationship exists
between the total propagating power and on-axis intensity at the beam waist:

I(r=0):P~( 2 2)
o,

Further satisfying properties of the Gaussian beam follow from Eqns 23 and 24
2
in the limit of positive z >> T @y =z, - In this case, R(z) —»> z , o -
A

2 2
A2 - AR , 0 > /2, and the complex exponential approaches
T @, T,
jexp[-jkz(1+1*/2z%)] . Hence, provided that the observation point is such that r < z or R,
the resulting electric field behaves as

E(r,z) > E, JZ(F;)S exp[—(zw,r* /(AR)*]- exp[— j(kR)]

which is the expected form of a spherical wave weighted by a beam-pattern function.
The important distance parameter z, is called the Rayleigh length. It also happens to be
the distance for which R(z) equals its minimum value.

Another satisfying property is found by tracking the r = o or 1/e profile of the
beam in the “far-field” limit z >> z,. In this case the r = ® locus asymptotically
approaches a full angle (centered about the z axis) of

Oy =2- tanl(wj —2-tan™
z

2-4
Tw, T-0,

Redefining oy as the lateral extent d of the Gaussian beam at its minimum aperture, we
see once again a dependence of the far-field behavior on the ubiquitous “diffraction”
ratio, A/d.

All of these properties are exemplified in the curves shown in Fig. 11 for two
representative Gaussian beams propagating in free space, one with a minimum spot
diameter 20y = 5 mm (0.2 inch) and the other with 20y = 100 mm (4 inch). The
wavelength of both is 1 mm and beam waists occur at z = 0. For the smaller-waist beam,
the Rayleigh length z, is only = 20 mm so the beam quickly diverges to a full divergence
angle of about 14°. For the larger-waist beam, z, is about 8 m, so the beam remains
highly collimated out to this distance and then begins to approach a divergence angle of
just under 1°. Note that this larger beam would not be too difficult to support by a
relatively simple telescope of aperture about 8 inches or more in diameter — that is, a
man-portable instrument.

The behavior of the larger beam in Fig. 11 illustrates an important potential
advantage of mm-wave and THz propagation over that in the lower RF bands. Namely,
in applications where the remote sensor supports a Gaussian beam and the object or target
is at a short range not much greater than the Rayleigh length, the divergence of the beam
between the two can be very small. And thus the intensity will drop far slower than the
1/1* spherical-wave behavior in the “far-field” of every common antenna. As will be
shown later in Sec. X, this has important implications on the sensitivity and spatial
resolution of practically any remote sensor.
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E.3. Transformation of Gaussian beams: An representative system example

A second benefit of the Gaussian beam approach is its tendency to remain
Gaussian through transformation by various optical two-port components, such as lenses
and mirrors. As in microwave network theory, passive optical two-ports can be
represented by a number of different 2x2 matrix formulations depending on the physical
formulation of the propagating electromagnetic mode. A common formulation in optics
is the “ray,” represented by a column or row vector [r(z), r’(z)], where r is the distance
from the propagation axis and r’ is the slope of the ray with respect to this axis. Optical
components are represented by 2x2 ABCD matrices, and an input ray is transformed

according to
b | _(A BYE,
ta) \C DK,

Some good examples of such matrices are: (1) free space path of length L, A=1,C = 0,
and D = 1; (2) thin lens of focal length f: A=1,B=0,C=-1/f, D=1. The accuracy of
this formulation is best for “paraxial” rays, i.e., those propagating close to the optical
axis.
Remarkably, the ABCD representation also applies to Gaussian beam
propagation through the definition of a complex Gaussian beam parameter
1 1 A

10 R@) e

The transformation equation is then given by
Ag, +B
O =
Cq,+D
where q; is the beam parameter in a plane z = z;. Note that the free-space ABCD matrix
simply transforms as gi+; = q; + L.

As an illustrative example of the Gaussian beam approach, Fig. 12 shows the

modeling of the radiation propagation in a system familiar to the author: the THz
photomixing spectrometer. In this case, coherent mm-wave and THz radiation is
generated selectively by beating two frequency-offset lasers in a small photoconductive
element mounted at the driving point of a planar antenna. The planar antenna is located
on a semi-insulating GaAs or InP substrate — both having very low absorption in the THz
region but difficult to make antennas with because of their high dielectric constant ,
& ~ 13. Therefore, the photomixer substrate is abutted to the back-side of a high-
resistivity Si hyperhemisphere as discussed in Sec. III.B . The radiation coming out of
the hyperhemisphere will likely be diverging, so a second focusing lens (e.g., plastic) is
added at some distance to focus the radiation down to a beam waist. Since the purpose of
the spectrometer is to provide radiation to a sample cell for THz spectroscopic analysis,
an interesting question is if and where this beam waist will occur, and how big the
minimum spot size will be.

The solution is found by first estimating the pattern coming out of the planar
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Fig. 12. (a) Results of Gaussian-beam design of THz photomixer spectrometer as
a representative problem in system-level free-space radiation
transformation and coupling. (b) Exploded view of photomixer
region consisting of planar antenna, semi-insulating substrate and Si
hyperhemisphere.

antenna as an equivalent Gaussian beam as shown in the exploded view of Fig. 12 . The
two curved loci in this view represented the r = ® points. The beam propagates through
the GaAs or InP substrate, into the Si hyperhemisphere, and is then transformed into free
space using an ABCD matrix appropriate to a spherical-dielectric interface.”® To avoid
significant total-internal reflection, the hyperhemisphere can provide only a slight
transformation of the beam, which remains diverging after passage through the Si-air
interface.
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The free-space Gaussian beam then propagates to the (plastic) plano-convex lens
which transforms the diverging Gaussian beam to a converging beam through the
application of the thin-lens ABCD matrix. By judiciously varying the hyperhemisphere-
to-plano-convex separation, we achieve the beam waist shown in Fig. 12. The waist
shown has a minimum spot size ®, ~ 1.5 mm, consistent with the given frequency (300
GHz), the planar-antenna spot size (0.2 mm), the radius and set-back of the Si
hyperhemisphere (5.0 and 1.76 cm, respectively), and the focal length and diameter of the
plastic lens (2.0 and 2.0 inch, respectively).

F. Friis’ Free-Space Transmission Equation

As discussed above, sensors in the THz region often use antennas or antenna-
like structures to couple radiation to and from free space. If the antennas are unimodal,
as is often the case, one can apply the concepts and terminology of RF free-space link
theory, developed originally by Friis for communications systems operating at much
lower frequencies. The theory assumes that the target or sample the sensor is detecting is
in the “far field” of the transmit antenna, and the receive antenna is in the far field of the
target or sample. In this case, even if the radiation is in the form of a Gaussian beam, the
transmitted and receive waves both approach a spherical wave form, E = Eqe?/r, so that
the Poynting-vector magnitude goes as 1/r. And then because of the inherent
reciprocity of all antennas, it makes sense to represent the receive antenna by an effective
aperture A, which is defined by

Prec = Aer | gr 0. 0) €p
where P, is the power available to the antenna for delivery to a load, §r (0,,¢,)1s the

average Poynting vector for incoming radiation along the direction (60,.¢,) in the spherical
coordinates centered at the receiving antenna, and g, is the polarization coupling
efficiency. Although this expression is prevalent in electromagnetics and
communications texts, it is strictly valid only when §r(er,¢r)is aligned with the

direction of the beam-pattern maximum. When there is mis-alignment, another factor is
required which is the just the receive beam-pattern

Prec = At “Fr(01,0:) [ S (61,¢,) | €p -
Now suppose that this received Poynting vector is generated by a second,

transmitting antenna. We can relate the received power to the properties of the
transmitting antenna by

15,0, =S, (r. 0 = e O TOB) PG BiGdh)
4ar 4ar

“t”

where the subscript is for transmitting, P4 is the total radiated power, P, is the
power used to drive the transmitting antenna (in the matched case, equal to P,4), 6, and ¢,
are the spherical angles in the spherical coordinate system centered at the transmitting
antenna, r is the distance between transmitter and receiver, and 1 is the path power
transmission factor. In writing this expression it is understood that F, is taken in the
direction (0;,¢;) pointing towards the receiver, which is not necessarily the direction of the
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Fig. 13 (a) Direct detection receiver and (b) heterodyne (or homodyne) receiver.

maximum of F;. Substitution into the expression for P, yields the relationship

F)rec — &ff |:)in(-?’t . Fr (it;f;)lzt (9r>¢r) r- gp

This can be simplified further in terms of the (ostensibly) known parameters of the
receiving antenna using the relationships,

G G
Pout = Prec —= Prec 7r2
T 4TEAeff /7\,

where P, is the power delivered to the load of the receiving antenna. Substitution of P,
into P, yields

2
A
Pout = Rn(“-ﬂflj GrGt : Fr(9r9¢r)Ft(9U¢t)'T'gP

an expression commonly known as Friis’ formula, in which the dependence on Ay is
cancelled out by going from the input port to the output port. Friis’ formula effectively
treats the combination of antennas like a two-port network with the pattern angular
dependence, polarization dependence, and path transmission included explicitly. The
term (M4nr) is called the free-space loss factor, which is of considerable practical and
historical importance.

V. THz Receiver Types and Performance Metrics
A. Architectures

As discussed in the Introduction, an important defining criterion for THz sensor
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modality is receiver architecture. There are two types, incoherent and coherent, both
shown schematically in Fig. 13. The incoherent architecture is as old as RF technology
itself and the coherent came soon thereafter, dating back to the early part of the 20"
century. Like many other system architectures, they persist largely by the ability of
engineers to continually improve performance by perfecting the components.

A.l. Direct

The block diagram of a generic direct receiver is shown in Fig. 13(a). The
incoming radiation from the target, be it thermal emission or transmitted power from the
sensor itself, is collected by the receiver where it is rectified from RF (THz) to baseband
by a “direct” detector. In most practical cases the baseband is defined by amplitude or
frequency modulation of the incoming signal to reduce the effect of gain drifts and 1/f
noise that occurs in the THz electronics. The rectified THz signal is then amplified and
demodulated down to DC using synchronous detection. For AM modulation the
synchronous detection is often carried out using a lock-in amplifier.

In the THz region the direct detector is almost always a power-to-voltage or
power-to-current converting device. That is, it is a device that puts out a voltage or
current in proportion to the incoming power. There are many examples of such devices,
but the most popular are field detectors and bolometers. Field detectors, such as Schottky
diodes, respond directly to the THz electric field and generate an output current or
voltage through a quadratic term in their current-voltage characteristic. Bolometers are
composite devices consisting of a THz absorber and a thermistor. The THz absorber is
generally isolated thermally from the environment so that the absorbed THz power raises
the temperature both of the absorbing layer and an attached thermistor. The thermistor is,
by definition, a device that displays a large change of resistance to a small change of
temperature. In some bolometers, such as the composite type, the absorber and
thermistor are separate elements. In other bolometers, such as the hot electron type, they
are integrated into the same device.

A key factor in all direct detectors is spectral bandwidth. As in most analyses of
signal processing, we assume here that this is band limited between v, and v, + Av. This
can be a real bandwidth defined by a THz bandpass filter, or it might be an
approximation to a real spectrum.

A.2. Preamplified Direct

One of the most successful areas of RF electronics during the past decade has
been monolithic microwave integrated circuits (MMICs). By integrating active devices,
some passives, and matching circuits on the same semi-insulating substrates, it has
become possible to fabricate low-noise amplifiers (LNAs) up to frequencies of 100 GHz
and beyond.34’35 For example, LNAs having a gain of 17 dB, bandwidth of 30 GHz, and
a noise figure of 6 dB have been fabricated and tested around 94 GHz.*® The advantage
of an LNA is that if it has adequate gain, it can dominate the noise figure of the following
square-law detector, leading to a much lower NEP than can be achieved by direct
conversion using the same square-law detector. As will be shown later, the sensitivity of
the preamplified direct receiver can then approach the photon-noise (quantum) limit.
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A.3. Heterodyne

In the coherent system of Fig. 13(b), incoming radiation from the target, be it
thermal emission or transmitted power from the sensor itself, is combined with power
from a local oscillator (LO) on a THz mixer. If the signal and LO frequency are
different, there will be a beat-note generated at an intermediate frequency (IF) between
the two. This is called heterodyne conversion. It the signal and LO frequency are equal,
the beat tone degenerates to dc, and the process is called homodyne conversion.
Independent of the conversion process, all coherent detectors require a device that can
generate an efficient conversion of the RF power to the IF band. The most popular
mixers are field-type devices having a strong quadratic nonlinearity. Good examples are
Schottky diodes, superconductor-insulator-superconductor (SIS) tunnel junctions,’”*
and superconducting hot-electron bolometers.*

Coherent down-conversion has several unique features that distinguish it from
direct detection. First, mixing a weak signal with a relatively strong LO effectively
amplifies the received signal relative to the receiver noise floor, which can greatly
improve the sensitivity compared to direct detection. Second, for the typically weak
signals in the THz region, the mixing process is linear. That is, the signal power at the IF
frequency is linearly proportional to the signal power at the input. Therefore, the receiver
passband can be defined by an IF band pass filter, which is generally much lower in cost
and has much higher performance than any THz filter. This feature tends to make
coherent receivers the favored approach in applications requiring high spectral resolution,
such as molecular spectroscopy.” But as will be shown below, the direct receiver tends
to be preferable in wideband applications such as thermal imaging because of its superior
spectral bandwidth and simplicity.

A.4. Pre-Amplified Heterodyne

An intriguing possibility in the millimeter-wave band and lower end of the THz
range is a preamplifier feeding a mixer element. With recent advances in MMIC solid-
state power amplifiers and the possibility of integrating them with high-frequency
Schottky mixers monolithically, one can envision a receiver in which an antenna couples
radiation to an LNA that, in turn, is coupled to a high-frequency mixer. The mixer then
down-converts the radiation to whatever IF band makes sense, be it narrowband for
spectroscopic applications, or wider band for thermal imaging applications. Intuitively,
one could design the LNA with just enough gain so that the overall receiver sensitivity
was not affected significantly by the mixer or following IF electronics. As will be shown
later, this provides excellent overall performance if the LNA noise figure is acceptably
low. And not surprisingly, it is the same architecture used at lower frequencies in
communications and radar receivers alike, perhaps most commonly in the handsets of
nearly every mobile telephone made today at PCS wireless frequencies.

B. Signal-to-Noise Ratio and Noise Equivalent Power

Once the THz signature is defined and the free-space link is established, it is the
job of the sensor to process the signal with maximum fidelity and minimum
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contamination or masking by noise. From the above discussion it should be clear that
the signal is the information-bearing portion of the incident THz average power, whether
the power is coherent or incoherent. The noise is then all other electromagnetic
mechanisms that cause the power to fluctuate about the average and, therefore, become
less certain. And from Sec. II such noise is always present, even in the absence of
electronic noise. So as in all other electromagnetic sensors, the analysis of sensor
performance must be carried out by accounting for the noise, and it is important to define
a metric for the sensitivity in the presence of the noise.

In principle, at any point in either sensor architecture of Fig. 13, it is possible to
define the average power associated with the signal and the rms fluctuations in power
associated with the noise. So a useful metric of the ability of the sensor to distinguish the
signal from the noise is the power signal-to-noise ratio (SNR),

S  <P>  <P>

N \/<(AP)2> SP'BENB
where Sp is the power spectral density and Bgyg is the equivalent noise bandwidth at that
point in the sensor. Bgyg is generally dictated by sensor phenomenology, such as the
resolution requirements and measurement time.

As discussed in Secs. [ and IV above, there are two types of receivers used in the
THz region: (1) incoherent, or direct, and (2) coherent, or heterodyne. From a signal
processing standpoint, the detector in both types of receivers is the device that converts
the signal from the RF (i.e., THz) region to baseband (usually around DC) where it can
be positively identified in comparison to the residual baseband fluctuations that comprise
the noise. For incoherent receivers, the detector is often the first device in the RF front-
end, connected directly to the antenna. In coherent receivers, the detector is generally a
device in the IF part of the circuit, after an RF front-end that uses a mixer to down-
convert the RF signal from the THz region to an IF band at much lower frequency. The
commonality between the incoherent and coherent detectors is that they are generally the
first nonlinear element in the receiver chain — at least the first nonlinear element by
design. This may appear contradictory to the definition of a mixer until we realize that
the signal power in any coherent receiver is almost always much weaker than the local
oscillator power. Under this condition, a mixer acts as a linear (in amplitude) transducer
that simply translates the frequency.

As in any RF system, it is the signal-to-noise ratio after detection that matters
most. This is what determines the bit-error-rate in communications systems and the
probability of detection in radar systems, for example. This will become more clear later
in the Sec. VIII.B on receiver operational characteristics. So for the present discourse,
we will always seek the SNR after detection. Clearly, the signal-to-noise ratio depends
on the signal strength so is not by itself a good metric for comparing detector or sensor

types.

C. Noise Equivalent Power

A good figure-of-merit for overall sensor sensitivity comes from the fact that,
generally speaking, only post-detection SNR values of order unity or higher are useful.
This is intuitively obvious, but can also be proven mathematically by statistical decision
theory. A more useful metric for sensor performance is to fix the SNR at some value and
then solve for the signal power that achieves this. The fixed value of SNR universally
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accepted by sensor engineers and scientists is unity. The resulting metric is the noise-
equivalent power spectral density, NEP, which by definition is the input signal power to
the sensor required to achieve a SNR of unity after detection (AD). As we will show
later, square-law detection of a signal buried in additive white Gaussian noise has the

effect of increasing the SNR by
[ j ( ) i
N AD N BD ZAf

where Av and Af are the pre- and post-detection bandwidths, respectively, and (S/N)gp is
the SNR before detection. Thus, the NEP is given by (in units of W)

[2Af [2Af
NEPAD = NBD . U = NEPBD . ;

For the purpose of comparing different sensor technologies, it is conventional to divide
out the post-detection bandwidth effect (or equivalently, setting it equal to 1 Hz). This
yields the normalized NEPAp, [in units of W/(Hz)"? ], which we define as

/ 1
NEP/(D = Ngp - E

Generally, the pre-detection NEP scales with Av, so we introduce a normalized NEPgp,
NEPAD = NEPB/D AV

Note that these definitions are not spelled out explicitly in the most of the literature on

remote sensing. But we do so here to help students or new researchers to the field since

the NEP is one of the most bewildering of all system metrics.

A useful feature of the NEP is its additivity. If there are N mechanisms
contributing to the noise at a given node in the receiver, if the mechanisms are
uncorrelated to the signal and to each other, if they obey Gaussian statistics, then the total
NEP is the uncorrelated sum

NEPZ, = NER? + NEP} +....NEP]

This property applies to any node, pre- or post-detection, and will be used explicitly when
we discuss the contribution from electronic noise. In reality there are cases where a noise
mechanism is correlated to the signal (e.g., radiation noise) or to another noise
mechanism (current and voltage noise in transistors), so one must be careful in applying
this addition formula. In such cases, one can always fall back on the SNR as a useful
measure of overall system performance.

D. Noise Equivalent Delta Temperature

For radiometric and thermal imaging systems, it is sometimes convenient to express the
sensitivity in terms of the change of temperature of a thermal source that produces a post-
detection SNR of unity. The resulting metric is the noise equivalent delta temperature, or
NEAT, which is given by*!

NEP,,
dl:)inc / dT |PB
where Pj,. is the incident power. In the Rayleigh-Jeans limit and assuming that the

source has unity emissivity and fills the field-of-view of the sensor, we find P;,c = M
kgTg Av, so the NEAT becomes

NEAT =
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NEP,,
M kg -Av

NEAT =

E. Noise Figure and Friis Formula

For the linear elements of a sensor, including both active and passive
components, a more universal metric is the noise figure, F. This is defined for all linear

two-ports as
E_ [(S/N)] 1<F <o
(S/N)oyr

In other words, the noise figure quantifies the degradation in SNR as a signal passes
through a component in a linear chain. When combined with the gain of each
component, the noise figure can be calculated simply from a sequence of two-ports
through the expression
F,-1 F -1 F
FTOT=F1+ 2(5 +G3G+ .....
1 172 HGi
i=1
where G; is the power gain of the i" element. Note that this gain accounts for impedance
mismatch between elements. Physically, this means that components located further
down a chain tend to be less important if the earlier components have high gain.

V. THz Signal and Noise Processing

Once radiation associated with the object signature is coupled into the sensor
receiver, it generates the signal — a voltage or current in a network that must be processed
from the antenna front-end to the data-collection or decision-making (logic) devices in
the back end. Independent of the coherence of the incoming radiation, there are five
functions in this process that are rather generic in THz sensors, and all electromagnetic
sensors for that matter, and will be discussed in some detail here: (1) rectification, or
detection; (2) integration or averaging (3) matched filtering; (4) frequency conversion;
and (5) amplification; either before or after detection. Rectification is always necessary
to extract the information about the object of interest, which that usually resides on the
THz envelope. Therefore, it is discussed first and in some detail. The two common
means of rectification in THz receivers are square-law and envelope detection.
Integration is almost always carried out after the rectifier to add multiple samples of the
information extracted and therefore improve the quality of the data or the confidence of
the decision. Matched filtering is always carried out in the linear part of the sensor
before detection. Frequency down-conversion is always necessary because logic circuits
do not (at least not yet) work at THz frequencies. Amplification can be carried out either
in the linear part of the receiver before detection or in the IF or baseband portion after
detection.

Remarkably, all five of these functions are carried out in the two common
receiver architectures discussed in the Introduction: (1) incoherent, and (2) coherent. We
start with a discussion of the detection function since this is the centerpiece of most THz
Sensors.
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A. Classical Square-Law Detection and Integration

Simply stated, a square-law detector is a device or circuit that takes an input
signal and produces an output that is proportional to its square, X, = AX,,2 , where Xy
could be a current or voltage and A is a proportionality constant. The utility of such a
device, just like a mixer, is in rectification, or frequency down-conversion. This is most
easily seen in the special case of a coherent signal X;,(t) = Bcos(wt + ¢).  If put through
a square-law detector, the output becomes Xou(t) =AB* (1/2) {1+ cos[2(ot+¢)]}. So if the
square-law detector is followed up by a low pass filter (i.e., a time-domain integrator)
with integration time t >> 27/® , then the second term will not contribute and the output
of the filter will be

Xou = AB%/2 = RPg (25)

where R is a constant and Pg is the average absorbed input signal power. In the language
of sensor theory, R is usually called the responsivity and is measured either in A/W or
V/W. Presumably, A is known, so that B can be determined from the X, dc term.
Square-law detectors are preferred in RF systems over cubic and other possible detectors
for this reason.  The proportionality constant A is dependent only on the detector
characteristics and not on the power level, at least up to a level where saturation and
higher-order effects begin to occur. A single calibration of A in the “small-signal”
regime is all that is required to use the square-law detector over a wide range of input
power.

We assume that the output noise from the detector is caused by an input white
noise spectrum unrelated to the signal. We note that Fourier components at different
frequencies correspond to different longitudinal modes, which in a random-noise (e.g.,
thermal) power spectrum are uncorrelated. Thus, such components will not produce an
average dc component, or signal. But just as in the case of quantum noise, they will
produce a fluctuation of the dc term about its average, i.e., noise. The magnitude of this
noise can be determined as a sum over all possible mixing terms whose difference
frequency lies within the passband of the low pass filter. If the input power spectrum Sx
is flat across the pass band Av, it can be shown that*

v+Av f

Sy (1) = A" [Sy v+ )-8y (1) dv=2A (Sy,)’ -Av-(l—i):Z‘Rz(APN )Zin (26)

Av)

Py is the noise power. The factor of two here comes from the fact that two spectral
components in Sy contribute to X(v’) - one above and one below v.

At this point, we see the merit of an integrator in the signal processing. Such a
device can be analyzed as a low-pass filter of bandwidth Af. If Af << Av, which is almost
always the case in practice, then Sy, can be considered flat over the integrator passband
and we get, by linear signal processing,

(AXour )" = [H(F)S,, (F)df ~2A%(S, )P - Av-Af =287 (AR,)* - Af /Ay (27)
0

And by taking the ratio of Eqn 25 to Eqn 27, we end up with the output signal-
to-noise ratio
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2 a2 2

(SNR,) = —our - W) AV _ g 2. AV

<(AX) > R(AR,)” 2Af 2Af
Square-law detectors also get used for detection when the input signal is random
noise, as in the case of passive radiometers or noise radars. Now the input signal has a
white power spectrum superimposed on the noise spectrum. In this case, the “signal” is
just the portion of the power spectrum of Eqn 26 that gets converted by the detector down
to baseband, assumed in this context to be dc. We know that any Fourier component of
the noise spectrum is, by definition, self-correlated. The square law detector will produce

a dc output from each component in accordance with the following expression

Xowt = Avoﬁvlsxin (V){/Sx, (Mdv = AVU]’AéXin (v)dv

If the input power spectrum is flat across the passband, this results in

Xow =A-Sy -Av=R Py (28)

ou Xin

just as for coherent signal, but now written in terms of the average noise power. Hence

(f)df ~2A%(S, )’ -Av-B,, =2R"-(AR,)*-Af /Ay (29)

><OUT

(M)’ = [H(1)-S

And by taking the ratio of Eqn 28 to Eqn 29, we end up with the output signal-
to-noise ratio
X2 R2(Pn)? Av
(SNRyp)> = —=9uT - = (SNR;,)’

- - (30)
<(AX)* > RP(AP,)* 2Af

Av
f

which is the same as for the coherent input signal.

The utility of Eqns 29 and 30 are manifest. They get applied in nearly every
mm-wave and THz sensor whose signal is actually random noise. They can be
understood in a different way by noting that the sampling time of the integrator is t, =
1/(2Af), so that there are Av 1y independent samples per second. Because noise is
random, the effect of adding these multiple signals becomes the sum of the powers, or the
square root of the number of samples. Hence we can re-write Eqn 30 as

SNR,y; =SNR, -y/Av-7, = SNR, /N

From the standpoint of modern electronics, it is important to recognize that the
operation of a square-law detection is a form of autocorrelation. This is easy to see in
the case of thermal-noise, or AWGN in general. The Fourier components at different
frequencies corresponding to different longitudinal modes can then mix together, so the
output must be considered as a sum over all possible mixing terms whose difference
frequency lies within the pass band of the low pass filter, 1/t. A little thought shows that
this is given by

Sout | S (D)3, (L + )t
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the autocorrelation function.®

B. Quantum Square-Law Detection and Integration

There exist a class of THz detectors that display quantum-mechanical response
to incoming radiation. They tend to be the devices that have, for some reason, a band gap
in their electronic density-of-states whose energy is of order hv . Two examples are
hydrogenic-impurity semiconductors (i.e. extrinsic photoconductors), and low-T¢
superconductors. Their quantum mechanical response is described by the photoelectric
effect, whereby the detector absorbs photons that liberate charge-carrying particles at a
rate

P

hv
If these charged particles are electrons or holes that are liberated in an electric field, they
can contribute to a net photocurrent given by
i = egP

hv

where g is the photoelectric (more commonly called “photoconductive”) gain, which may
be greater or less than unity. If we think of this expression in the context of a THz
photon detector, the output power must be proportional to i* and therefore to P2. In other
words, the photoelectric effect naturally obeys a square-law behavior. If such a
“photodetector” is used as the first stage of a THz sensor, directly coupled to the
incoming radiation, one will get a response to the signal power of

1y, =292 (1)
hv
But the response to the radiation fluctuations is more complicated. Following
the same line of reasoning as applied in Sec. V.A above, the photodetector can mix
fluctuations of different spectral components by virtue of its square-law behavior. We
can duplicate the analysis of Sec. V.A simply by making the analogies X — i and R —
eg/hv.

v+AV e 2 1 f
S, (f)= A Jsxm<v+f)-sxm(v)-dvzz-[hgvj (AR (1)

r

In most sensors at THz frequencies or above, the frequency f occurs in the electronic
circuit that has a maximum frequency much less than Av. In this case, the power
spectrum of current fluctuations is given by

S,() ~ 2@9] <AAPin)2 (32)
14 14

so that processing by a low-pass filter (integrator) yields on output mean-square current

of
(Al = 2.(99j MM (33)
hv Av

Taking the ratio of Eqn 31 to Eqn 33 leads to the signal-to-noise ratio
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~ Loy (eg/hv)*(Pin)’ Av _ sNR LAY
<(AD* > (eg/hv)*(AP)? 2Af ™ 2Af
the same as the classical case.
It is illuminating to examine Eqn 32 for a coherent incident signal, which using
the result from Sec. II1.D.2. for the mean-square input power fluctuations leads to

SNRoyr

. ﬂz hVEin 2.
s0~2 (2] T2 v

Substitution of Eqn 31 then yields

Sl(f) ~ 2egldc
This is the same form as the famous Schottky expression for electron shot noise in an
electronic device, discussed later in Sec. VILLA. Therefore, it is called the photon shot
noise expression. “Full” photon shot noise corresponds to g = 1. “Suppressed” and
“enhanced” shot noise correspond to g < 1 and g > 1, respectively. This result lends
credibility to our analysis of Sec. II in terms of power fluctuations.

This result has been the source of confusion to students and professionals alike
because it is identical in form to the current fluctuations in electronic devices in which
shot noise occurs, a good example being bipolar transistors. This has led many to believe
that it is the fluctuating nature of the electrons in the photodetector that give rise to the
photon shot noise. Hopefully, the present derivation makes it clear that the source of
photon shot noise is fluctuations from measurement of the radiation itself and the
inherent ability of photon detectors to mix down these fluctuations into an electronic
circuit.

(f)df ~2A%(S,, ) B,

XOUT

(Ai)? ETH(f)s

C. Classical Heterodyne and Homodyne Conversion and Detection

As discussed in Sec. IV, heterodyne and homodyne detection entail the mixing
of an input signal, be it coherent or incoherent, with a local oscillator. The mixing device
is usually one that, although not necessarily perfect square-law, has a large quadratic
coefficient such that the current or voltage in the output port is proportional to the input
current or voltage squared, X, = AX,,? , where A is a proportionality constant. This is
exactly the relation we had for a rectifier. For a mixer, we change Xinz to X X10 , and for
Xin = Beos(wy, t) and X o = Ccos(wiot), we find

2 2
XM= A{Bz (1+cos2w;,t) + % (1+cos2w t) + BC cos(w, o — )t + BC cos(w,, + @, )t}

The factor cos(wLo-mi,)t is the intermediate-frequency (IF) term. In the THz region the
mixer is generally operated such that ® g >> |0 o-0i] and ©p o+, >> |©po-Mi|, SO that
the only remaining terms are

2 2
X (1) = /{Bz + % +BCcos(@,o — a)in)t} - nm[Pm +P +2P. P cos@,o — a)in)t] (34)
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where P;, and P are the incident input and LO powers, and 1 is the fraction of each that
is usefully absorbed. The output power at the IF frequency for the heterodyne case is
given by

Eout = DY(Z)U‘ =D- (USR)2 2|:)m : I:>LO (35)

since the long-term time average of cos*(ot) = Y% for any . The quantity D is the mixer-
to-IF circuit matching factor that accounts for any mismatch between the mixer and IF
load impedance. This expression clearly displays a linear input-output relationship. It
is customary to lump all parameters other than P;, and m into one quantity called the
mixer conversion gain, Gy

Pouw =D (ﬂiR)z 2P|n : PLO = 772 'Gmix - Pin (36)

In other words, G,x represents the fraction of all of the absorbed incident power in one
sideband that is converted to the IF. In all mixer types, R decreases as P; o increases, and
the impedance match can never be made perfect. Hence the maximum attainable single-
sideband conversion gain is usually less than unity and the gain factor really represents a
loss. Special types of mixers, such as parametric converters and certain quantum mixers
can display a conversion gain > 1, but it is rare and difficult to achieve. Similarly, the
output power for the homodyne case is

Eoulaizul = (ﬂm)z : 4|:>|n ' I:)LO

Pot=2- 772Gmix - Pin
which, again, is a linear input-output relationship.

The noise processing of the coherent converter is a bit more subtle. One noise
process that must always be considered is the fluctuations in X, caused by the quantum-
mechanical fluctuations in the two direct-detection terms in Eqn 35, P;, and P o. In most
if not all THz mixers, P o >> Py, , so from Sec. V we can write

(AX oyt )’ =2%? '(AI:)in)2 ‘B /AV
where the IF bandwidth By replaces the integration bandwidth for direct detection. For
practical reasons it is often true that the LO power is unimodal, so that from Eqn 12 we

can write (APin)2 = \/ n-hv, -Po-Av, where P is the incident LO power. Thus we
find

(AX oyt )2 =2% ‘n-hviy P B (37
or

(APOUT)2 =2D-%®? ‘n-hvg P B =Gy m-hv B (38)

Taking the ratio of Eqns 38 and 36, we get the heterodyne radiation-noise-limited signal-
to-noise ratio:

(Sj _ 772 . Gmix . Pin _ 77 'Ein (39)
NJe Guxm-hvig-Be hvg Bge
for the heterodyne case, and
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(sj Gy -Pn 27 -Pa
NJe Gux nm-hvio-Be hv B

for the homodyne case.

D. Quantum Coherent Heterodyne and Homodyne Conversion and
Detection

As in the case of direct detection, the coherent conversion with quantum (photo)
mixers follows from the classical analysis by the substitutions X — i and R — ge/hv.
The LO oscillator and input electric fields are treated classically. So from Eqn 34 we can
write

0 ® =1L [Py 4 Plo + 2P, Ry cos(@y0 — 0,

This leads to the heterodyne IF signal output

2 €
and the homodyne IF signal output
2
H e
e =(n 2] ap,op @

The same substitutions into Eqn 37 lead to a mean-square IF current fluctuation
arising from LO radiation fluctuations of

(Aigy)’ =2(eg/hv)*-17-hv - P - By =2egl,, - By (42)
for the heterodyne and homodyne cases.
Taking the ratio of Eqn 40 or 41 to 42 we get the “quantum-limited” SNR

expressions
(éj _ n - Pin
NJie hvio By

( S ] 2.7 -Pin
NJie hv B
for the homodyne case. Note that the quantum mechanical nature of the radiation enters
these expressions through the photoelectric effect and the photon fluctuations — not
through the mixing process. And because neither expression depends on the

photoelectric gain or on the LO power, both are identical to the analogous expressions for
classical coherent detection.

out

for the heterodyne case, and
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VI. Radiation-Noise Limits on Sensitivity
A. Radiation-Noise-Limited NEPgp of THz Direct-Detection Sensors

Before radiation ever enters a receiver and gets converted to information, there
are fundamental limits imposed on the sensitivity simply by the fact that every sensor
must carry out a measurement. Measurements perturb the radiation field and, as such,
introduce uncertainty. This uncertainty is evident through fluctuations of the radiation
described in this section. These fluctuations are rather independent of the sensor
architecture and depend, instead, on the nature of the radiation being detected.

A.1. Coherent Signal

In practice a THz sensor that receives a coherent signal must contend with
radiation noise at least at the level of photon shot noise from the signal. For radiation in a
single mode, this leads to a maximum power signal-to-noise ratio of

i: Pas 7P
N \/(Apabs)z \/77' hv-P,./Av-Av

Solving for P;,. with S/N = 1, we find the before-detection NEPgp of

NEP,, = WAy -
n

which is the famous photon- or quantum-noise limited expression.
The NEP after classical or quantum noise-free square-law detection follows
from Sec. V.A or V.B,

NEP,, = NEP,, - ZAAj _ hnv,/zAv.Af 43)

and the specific NEP is simply
NEP, = NEPw _ v iy

JAf

A.2. Thermal Signal

A common application in THz and infrared sensors alike is remote detection of a
thermal signal. In this case the maximum signal-to-noise ratio occurs when the only
source of noise is the radiation noise of the signal. Again, we assume that the passband is
narrow enough that the Planck factor is the same for all modes, and that each mode is
equally well matched to the sensor. We then find

o M
P abs :[Zﬂm]'hl/oAV' fp

M

< (AP’ >=[D 1, 1- (hv,Av)* f(f, +1)

m
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V(AP)? hv, 'AV'\/[iUm]' fo(f,+1) (44)

/M
z’]m.fP M

S . E— -exp(=hv, / 2k, T
f.(f+1) ;Um p( 0 gl)

where the last step follows from the definition of fp and remains valid at any temperature
or passband center frequency.

This remarkable result is the basis for many important considerations about
thermal sensing in the THz region. First, because hv is generally << kgT in terrestrial
THz sensing, it implies that the signal-to-noise ratio before detection is always less than
unity for a unimodal sensor, but can be greater than unity if n,, > 1, as normally occurs
in infrared detectors. Second, the modal dependence would appear, on first glance, to
support an arbitrarily high signal-to-noise ratio given a suitable coupling structure. In
other words, it is not clear whether or not there is a quantum-limit.

To elucidate the quantum limit for this case, we must calculate the NEPgp but do
so in light of the fact that both the signal and noise derive from the same incident
photons. Because P;,. = Mhv fp Av, one can write

[an] Pinc

(.-
N * '\/[inm]'Pinc(Pinc_FM'hVO'AV)

M
(S) ~ Pabs [%Um]hl/()'fp‘AV
N BD

Setting the (S/N)gp to unity and solving for Pj,, it is easy to show

. = NEP,, NET,, = h‘LOA". M

an -1 8 an -1

where NETpgp is the noise equivalent temperature of a single-mode thermal source. For
the unimodal case, this leads to a negative value - clearly not allowed on physical
grounds and a result of the fact that S/N cannot equal 1.0. It diverges for Zn,, = 1, and
for Zn,, > 1 it goes positive. In the special case that the sensor accepts a large number of
modes, each having the same value of n,, = 1 such that ¥n,, = Mn >> 1, we find NEP —
hvAv/n — the same photon-noise limit as for a coherent signal.

The quantum-limited NEP after classical or quantum noise-free square-law
detection follows from Eqn 43

NEP,, = NEP,,, - ZAA'C =M./2AV-M

v an_l

NEP,, =hv,-Av-

and the specific NEP is simply
NEP,, = M\/ZAV
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A.3. Arbitrary Signal, Thermal Background

A third important case of radiation-noise limited sensitivity occurs when the
direct detector is coupled to many more spatial modes than those of the signal. Those
beyond the signal modes are called “background” modes and can occur for a variety of
reasons, such as imperfect coupling between the receiver antenna and the external
coupling optics. If the radiation power from these modes dominates the radiation noise
from the signal modes and can be associated with a brightness temperature Ty , then one
can write from Eqn 44,

MS
-P
(Sj _ Pabs _ % nm "
N [ 2 Mg

* (AFess) hv, 'AV'\/[ZUn]' foa(fo +1)

where fpp is the background Planck function, Mg (Mg) is the number of signal
(background) modes, and P, is the power per signal mode, be it coherent or thermal (e.g.,
if thermal P, = hvo Av fp ). In general this expression is difficult to evaluate, but reduces

to simplicity if all modes have the same coupling efficiency, n. Then one can write the
“background-limited” expression

[S) _ N I:)inc
N Jeo hVo'AV'\/MB'ﬂ'fP,B(fP,B+1)
where Py, is the sum of signal power over all signal modes. This leads to the NEPs

NEP,, = hv,Av-\[Mg -1+ fo (T, +1)-:\/hv0 Av-Py(fos+1) _ NEF,.,
7 7
and NEPAD =\/2h VO Af ) PB(fP,B +1)
n

In the Rayleigh-Jeans limit where fp g >> 1, one obtains

NEP,. ~ [2k,T, -Af P,
7

and in the Wien limit where fpp <<'1

NEP,, ~ /Zhv0 -Af Py
n

This is the familiar background-limited NEP,p valid in the near-infrared or visible
region,* which confirms the present formalism.

When the background thermal noise power is comparable to the signal noise
power, both mechanisms must be considered. In calculating the NEP one can assume
that the radiation noise mechanisms are uncorrelated, but must be careful to account for
the correlation between the signal and its quantum noise. So it is wise to start with the
SNR, which can be written in the following form if all modes have the same 1,

[S) _ UN I:)inc

N BD hVo 'AV'\/MS - fp,s(fP,s +1)+ MB n- fP,B(fP,B +1)

where fps (fpp) signal and background Planck functions. By comparison to the above
background-limited expression, this becomes
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S _ 77’Pinc
(NJBD - \/hvoAv-n-Pinc(anS +D+hviAven-P(fog +1)
P.

inc

- \/h VOAV' Pinc(fP,S +1)/77+ NEszaCk

where the number of background modes is implicitly contained in Pg. The Planck
function fp 5 is correlated to P, through the source temperature, so a better form is

S j _ Pire
(N BD \/Pinc(Pinc +MShVOAV)/(M577)+ NEPbiCk

Setting the SNR to unity and P;,. to the NEP, one gets the quadratic equation:
NEPZ, - NEPy, MsVeAv - Msn _yep:

Mg -1 M -1

By recognizing the coefficient of the middle term as the quantum-limited NEPgp when

Mgn > 1, the only physically-allowable (positive) solution is:

Msn
Mg -1
and NEP,p, = NEPgp (2Af/Av)">. When NEPy,q >> NEPq and Mgn >> 1, NEPgp
approaches NEPy,x. And when NEPy,x << NEPq and Mgn >> 1, it approaches NEPq.

So a good approximation to the exact expression is obtained by the NEP summation
formula from Sec. IV.C,

NEPg, = ;{NEPQL + \/NEPQZL +4NEP,, -

NEP, ~/NEPZ +NERZ, = [MMS
Mgn—1

which is always usefully accurate if Mgn >> 1

For detection of thermal radiation, the most useful metric is NEAT.*  From the
definition given in Sec. IV, we can compute this easily in the Rayleigh-Jeans limit using
Pine ® M5 kgTs Av so that dP;,/dT = Mg kg Av and one can write from the approximate
expression

2hv,y - Af - Py(foq+1)
n

2
JZAV—Af-«—

ks(Msn—1) Av kBU(MsAV)Z
It is interesting that there is no dependence on the source temperature.
An interesting application of Eqn 45 is to examine the wavelength dependence
of NEAT for a multimode THz thermal sensor of fixed effective aperture. To do this in a
meaningful way we need to account for the dependence of M on frequency, as discussed

in Sec. IILD and written in the convenient form, M = Int(v/vg)* +1. If we assume that
Mgn >>1 we find from (45)

2
NEAT ~ 1 i hv, ﬁd'_ZTB-Af-FZ’B
Int(vy/vg)  +1\\ kg7 ) Av  Kkgn(Av)

This expression shows how important center frequency is to the sensitivity of a direct
detector. From the quantum-limited NEP,p expression one sees a linear dependence on

2
NEAT ~ \/[ hv, J 28F 2Ty Af Py (45)
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Fig. 14. Performance of a THz direct detector in the quantum limit assuming a cut-
off frequency of 75 GHz and the definition NEATgp = NEPgp/kg . For NEAT sp, an
RF bandwidth of 100 GHz and a post-detection bandwidth of 30 Hz were assumed.

vo and a square-root dependence on Av that appear to favor the mm-wave and THz
regions over the infrared. But the NEP can be deceiving if the total signal power is also
varying because of a change of mode number.

To exemplify this point, we plot in Fig. 14 the quantum-limited NEPgp
(expressed as a temperature NETgp), the number of modes and the NEAT 5p for a direct
detector having vg = 75 GHz. The quantum-limited curve rises linearly with center
frequency as expected, but the mode density is quadratic. So the change of temperature
required to match the noise decreases monotonically with frequency. This important
result is sometimes misconstrued as arising from the behavior of the Planck factor instead
of the mode density. And it tends to favor the infrared region in terms of ultimate
sensitivity. But by the same token, the infrared direct detector often accepts so many
modes that many of them couple to the background rather than the real target or the
object to be imaged. This drives up the contribution from the background term in Eqn
45, leading to the common occurrence of a “background-limited infrared photodetector”
or BLIP for short. In the mm-wave and THz region where the total number of modes is
relatively small to begin with, the background contribution is generally easier to manage
and, in good designs, make negligible.
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B. Radiation-Noise-Limited NEPgp of Classical and Quantum Coherent
Receivers

In Secs V.C and V.D, identical expressions were derived for the IF SNR of
classical and quantum coherent detection assuming that the dominant source of IF power
fluctuation was radiation fluctuations in the local oscillator. Interestingly, the resulting
expression, Eqn 39 depended on the input signal power but not on the LO power, so that
by setting the SNR to unity, one gets for both classical and quantum coherent detection

NEP, =0 B (46)
n
A similar derivation for the homodyne case would lead to
NEPHOM — hVLO i BIF
21 (47)

These expressions are amongst the most famous in remote-sensing theory not
just because of their role as a fundamental limit but because of their obvious consistency
with the postulates of quantum-mechanics and classical probability theory. All sensors,
even a radar operating at microwave frequencies, measure radiation by extracting photons
via atomic transitions and stimulated absorption in some component of the receiver.
This quantized process thus has a built-in granularity, or uncertainty, equal to a minimum
measurable quanta, which is hv/n . Sensors having small n are decoupled from the
environment and thus have a higher minimum quanta.

Probability theory teaches that the time rate of occurrence of an event or
outcome of an experiment is just P-R, where P is the probability or “expectation value” of
the event or outcome, and R is the rate of occurrence or “sampling” in the experiment. In
Eqns 46 and 47, the “event” is just the stimulated absorption of a photon of energy U.
From Eqn 4 the minimum expectation value is just AU (n=1) = hv. From sampling
theory the occurrence rate is just the analog bandwidth of the measurement, Bir. Now we
arrive at the quantum-limited expression for the expectation-value rate, or power,
associated with the measurement of radiation by any sensor at any frequency v. Einstein
is credited with the first understanding of the photoelectric effect, but apparently had little
or no role in the quantum-limit of radiation measurement. Nevertheless, these
expressions bear resemblance to some of his remarkable formulations — profound in
concept while very simple in mathematics.

VII. Practical Limits on Receiver Sensitivity: Electronic Noise

In practice, real THz sensors are almost always limited in sensitivity by factors
other than radiation noise, often by physical noise in the devices. It other cases the limit
may be imposed by the atmospheric fluctuations, electromagnetic interference (EMI),
power supply noise, and a myriad of other deleterious effects. Historically, it has been
the environmental effects that have often made the difference between success and failure
in THz deployment in the field.
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A. Physical Noise of Electronics

Within every sensor system, particularly at the front end, are components that
contribute noise to the detection process and therefore degrade the ultimate detectability
of the signal. The majority of this noise usually comes from electronics, particularly the
THz mixers or direct detectors themselves, and transistors in amplifiers that follow these
devices. The majority of noise from such devices falls in two classes: (1) thermal noise,
and (2) shot noise.** Thermal noise in semiconductors is caused by the inevitable
fluctuations in voltage or current associated with the resistance in and around the active
region of the device. This causes fluctuations in the voltage or current in the device by
the same mechanism that causes - resistance, through Joule heating, couples energy to
and from electromagnetic fields. The form of the thermal noise is very similar to that
derived in Sec. II for blackbody radiation. And because the operational frequencies of
electronics are generally well below the THz region, the Rayleigh-Jeans approximation is
valid and the Johnson-Nyquist theorem applies. However, one must account for the fact
that the device is coupled to a transmission line circuit, not to a free space mode, and the
device may not be in equilibrium with the radiation as assumed by the blackbody model.

All of these issues are addressed by Nyquist’s generalized theorem®’

AVims = [4ksTpRe{Zp}Af]"? (48)

where Tp, Zp , and Af are the temperature, differential impedance, and bandwidth of the
device. Even this generalized form has limitations since it is not straightforward to define
the temperature of the device if it is well away from thermal equilibrium. Also, the
differential impedance of the device is not well defined for transistors or three-terminal
devices in general. This topic goes well beyond the scope of this article, so suffice it to
say that Eqn 48 is useful not so much for its accuracy but because of its form. For
example, the thermal noise of transistors can often be written in a way that is identical to
Eqn 48 with Tp being the temperature of carriers in the active region and Zp being the
transresistance or inverse transconductance of the device.

Shot noise is a ramification of the device being well out of equilibrium. It is
generally described as fluctuations in the current arriving at the collector (or drain) of a
three-terminal device caused by fluctuations in the emission time of these same carriers
over or through a barrier at or near the emitter (or source) of the device. The mean-
square current fluctuations are given by

< (Ai)? >=2ell - Af

where I' is a numerical factor for the degree to which the random Poissonian fluctuations
of emission times is modified by the transport between the emitter (or source) and
collector (or drain). If I' = I, the transport has no effect and the terminal current has the
same rms fluctuations. When I' < 1, the transport reduces the fluctuations, usually
through some form of degenerative feedback mechanism, and the shot noise is said to be
suppressed. When I" > 1, the transport increases the fluctuations, usually through some
form of regenerative feedback mechanism, and the shot noise is said to be enhanced.

B. Equivalent circuit representations

While at first appearing to add insurmountable complexity to the theory of
sensor analysis, a great simplification results from the fact that radiation noise and two

63



forms of physical noise discussed above are, in general, statistically Gaussian. This is
easy to understand in the case of thermal noise. But it remains true in the case of shot
noise too provided that the number of electrons involved in the process is large. This
follows from the central-limit theorem of probability theory. A very important fact is that
any Gaussian noise passing through a linear component or network remains statistically
Gaussian.”®® Hence, the output power spectrum S in terms of electrical variable X will be
white and will satisfy the important identity

fo+Af

<(AX)? >= Sy ()-df xS, (f)-Af
fo

where Af is the equivalent-noise bandwidth. Then one can do circuit and system analysis
on noise added by that component at the output port by translating it back to the input
port. In the language of linear system theory, the output and input ports are connected by
the system transfer function Hx(f), so the power spectrum referenced back to the input
port becomes

S, (out)

[Hy ()P

A related consequence of Gaussian noise is that it can be represented in circuit
theory by an ac generator whose amplitude is the rms average of that variable and whose
phase is perfectly random. This allows one to apply the tools of circuit theory.*
Perhaps the simplest example is the ideal resistor. By the Johnson-Nyquist theorem, we
know that the open-circuit voltage across a resistor fluctuates with rms value given by
(4ksT Af R)? . We can thus write a noise equivalent-circuit representation of this by
adding in series with the resistor an ac voltage generator having amplitude (4kg T B R)"?
, a Gaussian-distributed amplitude, and a random phase. But one must remember that
this Johnson Nyquist result is really based on the independent fluctuations of orthogonal
photon modes, each characterized by frequency f. Hence, a more useful representation
results from Fourier decomposing the total voltage generator into independent generators,
each having amplitude (4ky T R/B)"? | frequency f, and random phase. Then, because
the generators at each f are statistically independent, we get their total voltage
contribution by adding the sum of the squares. Because the noise is white, the total
becomes

Sy (in) =

fy+B/2 172
Vi = [V (F)df :(‘”‘BBTRJ .B = (4k,TR)"
fo-B/2
as expected. The power of this decomposition comes in several techniques of signal
processing, such as square-law detection of Gaussian noise, as discussed in Sec. V.

C. Electrical Noise Limitations on THz Square-Law Detector

To get a complete accounting of sensor signal and noise effects for a mm-wave
or THz square-law detector, we need only combine all the noise generators with the
signal processing model in to one equivalent circuit. In Secs. V and VI it was assumed
that the radiation was noisy but the radiation detector was noise-free. To include the
noise added by and after the detector, we assume it is AWGN and simply add a variance
term AX” to account for the fluctuations in the signal (voltage or current). Hence, the
mean signal is given by
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M
X=% Pabs: R [Z 77m Pinc,m]
m

where the electrical responsivity is not mode-dependent because the detector responds the
same to all absorbed power independent of how it is absorbed. The power signal-to-noise
ratio after detection is given by

M
S (ER an I:>inc,m )2

(N]AD 2R (AP ) - (Af /AV) + (AX,)

A great simplification occurs when the total incident power, be it coherent or
thermal, is divided equally over all modes. This is a good starting approximation for
coupling thermal radiation into large coupling structures such as highly-overmoded
feedhorns and integrating cavities. In this case Piem = Pine/M and for AWGN in the
detector and electronics one finds

(ER . I:)inc in )2
(Sj _ M % (49)
NJw 2R (AP)” - (Af / Av) + (AX )

In the common case that the detector and post-electronic noise contained in AX
dominate the absorbed radiation noise, and assuming that none of this noise is correlated
to the signal power, one can set SNR = 1 and solve for P;,. (= NEP4p) to find

M V(Axn)z - M- NEPeIect
NEP,, = i = v
9{Z“nm an

This allows one to write the SNR and specific NEP for the general case as

S (Ppe)’
N =T M M
AD 2. (APygs)’ - (M /an)z(Af /AV)+(M /Z;ym)2 -NEP,,

As in Sec. VI.A one has to be careful in converting this to an NEP since the fluctuations
in absorbed power will likely be correlated to the average signal power (e.g., radiation
quantum noise). As in VI.A.C, an NEP summation formula is conveniently used as an
approximation:

M -
NEPAD ~ \/(M /an)z ‘{2'(APABS )2 '(Af /AV)+ NEPelzect

When each mode has the same coupling to the detector, one has Zn,, = M1 so that

NEP,, = 717\/2~(APABS)2 -Af /Av +(NEP,,)*
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Clearly, these are the same as the “unimodal” expressions one would obtain if only one
spatial mode were incident and collected by the detector. These will be used later in
conjunction with passive and active direct-detection sensors.

D. Electrical Noise Limitation on Heterodyne Mixer

Characterization of mm-wave and THz mixers can be done in the similar way as
for square-law detectors.  To account for the noise from the mixer itself and the IF
electronics following, we simply add an rms term [AP*]” to the IF power:

(Sj _ (77R)2 'Gmix i I:)inc
N Jner Mg Guix hvio "B + V(APH:)Z

where the radiation noise is all photon shot noise. Any mismatch between the antenna
and the mixer is accounted for by mg, and any mismatch between the mixer and the IF
circuit is included in G, . By setting the S/N to unity and solving for P;,. , we find the
specific NEP

. NEP. —
NEP,er = =0 = hvio /175 +/ (AP )" /[07)" G- Bie ]

IF
In the special case that the mixer and post-electronic noise dominate the
absorbed radiation noise, and all of this noise is AWGN, the NEP reduces to the “mixer-

limited” value
, V(AP
NEPmixer = %
(UR) Gmi>( : BIF
Thus, we can write the overall heterodyne S/N ratio as

(SJ _ (UR)Z 'Gmix Pinc
N Juer Mk *Guix "hvio *Bie +(77R)ZGmix -By - NEPR

mixer

and

NEP er =hvio /mg + NEP
Note that the units of this specific NEP is W/Hz, not W/(Hz)" as for the square-law
detector. This is because the mixer is behaving in a linear fashion with respect to the
signal power.

In the mm-wave and THz regions, the NEP gt is usually measured with two
loads of the same emissivity but different temperature Ty (e.g., ambient and 77 K) and
satisfying hv << kgTy . Given this fact it is useful to define a new metric called the
noise-equivalent temperature, or NET defined as that load which produces a (S/N)ygr of
unity. A short derivation yields

NET, e = ki(hVLo g + NEPn']ixer)
B
In the millimeter-wave and THz literature, this NET is more commonly known as the
receiver noise temperature, Trgc. More specifically, in the present case this is the
double-sideband noise temperature because both signal bands are assumed to be down-
converted. Because in the Rayleigh-Jeans limit the noise power per mode is linear in Ty,
this NET is also equal to the NEAT that we would compute from the more common
definition NEAT = NEP/[(dP;,./dT)]
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For the purpose of system analysis and characterization, an even more useful
metric is based on the fact that from Sec. VI.B the minimum NEP gt is just hv; g and the
corresponding minimum NET is just hvio/kg . This motivates a single parameter to
represent the degradation in sensitivity caused by imperfect coupling, mixer noise, and IF

electronic noise. This quantity is the “heterodyne coupling efficiency” mygr , and is
defined by

. hv hv
NER,; = Lo, NET, g = Lo
HET B " HET
VIII. Receiver Performance Limitations and Statistics

A. Optimum signal-to-noise ratio before detection: North’s Theorem

THz sensors face many of the same challenges as faced by early microwave
radars trying to detect small targets or large targets over a long range. Because of the
weakness of the source or the high atmospheric attenuation, the received signal in THz
sensors is usually very weak and difficult to distinguish from noise. As in the radar case,
there is great interest in processing the weak signal in an optimum fashion, particularly in
active sensors.

In one of the most elegant theorems in sensor theory, North showed how the
construct the receiver transfer function or impulse response function to maximize the
signal-to-noise ratio within a given resolution element. It is similar conceptually to
Shannon’s theorem in the sense that both state conditions of optimization: Shannon’s
stating the maximum information handling capacity on a noisy channel and North’s
stating the maximum signal-to-noise ratio on a noisy channel. North utilized the fact that
independent of the sensor type, the maximum possible RF SNR is

SR, :%

0

where Eg is the RF energy per sample and N is the noise spectral density in the RF part
of the receiver. When phrased for a pulsed system, Eg gets replaced by Ep, the energy per
pulse. But North’s theorem applies to cw systems as well by recognizing that these
systems sample the RF power at a rate given by the sensor instantaneous bandwidth B, so
the energy per pulse gets replaced by the energy per sampling time, or Ps/B , so that
SNRRF = PS/(N()B) = S/N.

North’s theorem showed that to achieve this SNR, the linear part of the RF
sensor should have the following transfer function H(f) and impulse response functions
h(t) :

H(f) = A*(f)

h(t) = a*(t)
where A(f) is the signal power spectrum, a(t) is the signal waveform (current or voltage),
and * denotes complex conjugation. The first one makes sense intuitively since it

simply states that all Fourier components of the signal spectrum should get “conjugately”
coupled by the receiver. It is similar to the condition for optimum power transfer
between a generator of impedance Zg and a load of impedance Z;, which from ac circuit
theory can be proven to occur when Zg = Z. *. The second condition is not so obvious,
but becomes clearer in the special case of a sinusoidal signal since then complex
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Fig. 15. Gaussian probability for the noise only and signal-plus-noise, applicable to a
direct detection receiver.

conjugation is equivalent to time reversal. The combination of the two conditions is
accomplished electronically with a “matched” filter — a pervasive device in radar and
communications systems today at microwave frequencies and below.

B. Sensor Performance after Detection: Receiver Operating
Characteristics

Given that the ultimate limits on the sensitivity any sensor depend on physical
and environmental noise, the final performance can only be predicted using statistical
means that properly account for each fluctuating effect. =~ Physical noise and other
fluctuations in each stage from the source of radiation to the output of the receiver
detector must be ascribed a probability density function (PDF) for the relevant electrical
variable at that point, and the overall PDF of the sensor in the presence of signal and
noise must then be constructed.

Given the overall PDF, a common measure of the sensor performance comes
from establishing a signal threshold at the output of the receiver detector.”® The threshold
approach, established early in the history of radar, is based on the observation that
receivers are usually designed to “filter” the signal from the noise such that in the
receiver baseband after detection the signal will have a greater amplitude than the noise.
For example, if the baseband is dc, then the signal will correspond to the dc component
and the noise will correspond to the residual ac power spectrum.

Given a well-define threshold, the probability of detection Pd, also called true
positive detection, represents the probability that the sensor output PDF in the presence
of the signal and all noise exceeds the threshold. The probability of false alarm Pfa, also
called false positive detection or “false positive” for short, represents the probability that
the PDF in the absence of the signal exceeds the threshold.  The statistical assumption
behind Pd is that a large number of such measurements are made so that Pd can be
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Fig. 16. Receiver-operating-characteristic diagram for direct-detection case.

thought of as either an average over time or an average over an ensemble of identical
receivers processing the same signal but at all the possible noise states.

Plotted together, Pd vs Pfa form what is called the “receiver operating
characteristic”, or ROC for short. Having its roots in radar detection, ROC diagrams are
now universal and get applied to remote and point sensors alike in all parts of the
electromagnetic spectrum and to other sensor domains, such as acoustic and chemical.
At present their most common application appears to be in the biomedical industry where
the difference between a true and false positive from a sensor often has serious human
consequences.

For electromagnetic remote sensors there are two commonly used sensor PDF
functions and resulting ROC diagrams that apply to the ideal direct-detection sensor and
heterodyne (or homodyne) sensor, respectively.
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B.1. Direct Detection Sensor

The analysis of Sec. V showed that the output noise spectrum after direct
detection could be treated in a simple way if the rf bandwidth greatly exceeded the post-
detection bandwidth, which is almost always true. In this case, the output consists of a dc
component superimposed on white noise whose spectral density is related to the sensor
PDF. In the ideal case, all of the noise is related to “physical” fluctuations of the
radiation or in the electronics so has an AWGN character. The overall PDF for the noise
alone is then Gaussian, meaning that the probability of measuring a particular value of X
(voltage or current) at the at any point in time is given by

P(X)= %exp[—(x )2 /2(AX)?]

\27 - (AX)?

where (AX)? denotes the variance. The overall PDF in the presence of signal is simply

1
V27 - (AX)?

where Xg is the average value, or signal. Note that the signal strength amplitude Xg is
always positive while X goes both positive and negative — consistent with the way that
square-law detectors process signals.

These two functions are plotted in Fig. 15 where a threshold Xy is also drawn.
Now the definitions of Pd and Pfa are defined graphically in terms of the cross-hatched or
shaded regions below the two curves and above the threshold. Mathematically they are
given by

P(X,Xg)= exp[—(X — Xs)* /2(AX)*]

Pdolo—— 1 Iexp[—X2/2(AX)2]-dx
V27 (AX)? X =xs
and
szé exp[-X?/2(AX)*]-dx

27 (AX)? xI
which can be written easily in terms of error functions. One can compute these integrals
for various values of (SNR)xp = (Xs)*/ (AX)* and Xy . One then arrives at the ROC plot

of Pd vs Pfa shown in Fig. 16. Note that this plot is universal in that it does not depend
on the specific type of direct detector or overall performance. The only assumptions are
that the noise is entirely AWGN in nature, and that the receiver architecture is based on
direct detection.
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Fig. 17. Probability distribution functions for noise only and signal-plus-noise in
coherent receiver.

The universal ROC curve clearly shows how the combination of SNR and Xy
impacts Pd and Pfa in a trade-off fashion. It also shows that an SNR of unity is rather
impractical, reaching a Pd of 0.9 only when the Pfa is greater than 0.1. This is in spite of
the engineering convention of using an SNR = 1 as a criterion of good detection in
Sensors.

B.2. Heterodyne (or Homodyne) Sensor

The heterodyne (or homodyne) sensor is more complicated because mixing AWGN
with a local oscillator will have a different result after square law detection than AWGN
along. The PDF now is the combination of two Gaussian functions, one representing the
fraction of the receiver noise in phase with the LO before detection, and one representing
the fraction of the receiver noise in quadrature (i.e., 90° displaced) from the LO. The
resulting post-detection PDF for the noise alone, decomposed into these two components,
is the classic Rayleigh distribution

P(X)=——5exp[-(X*)/2(AX)’]

The post-detection PDF for the signal plus noise is given by the famous Rician
distribution,”!

P(X, X ) = s exp[~(X” + X2)/ 2(AX)" |- L,[X - X / (AX '}
@X)

where I, is the modified Bessel function of order zero. These two functions are shown in
Fig. 17 where the Pd and Pfa have similar graphical interpretations as given for the
direct-detection case.
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coherent case.

Because the Rayleigh distribution is integrable, one can easily derive an analytic
form for the Pfa as

P, = TP(X)dX =exp[—(X7)/2-(AX)’]
Xr

but the Pd is more complicated and is best done numerically,
R, = [P(X, X,)dX
Xr

One form of the numerical results are plotted in Fig. 18 where Pd is plotted SNR with Pfa
as a parameter. This form eliminates the explicit dependence on a threshold. The
resulting curves show that, as in the case of direct detection, an SNR of unity is not very
useful, achieving values of Pd > 0.1 only when the Pfa is greater than about 0.01. The
key advantage heterodyne (or homodyne) over direct detection, as will be shown below,
is the much greater SNR that can be achieved for a given incident signal power. This is
the same reason that heterodyne receivers are still the standard today in radio
communications.

IX. Overall Performance of Four Types of Passive Sensors

In a passive sensor the “signal” is generally the time-averaged thermal radiation
in some spectral bandwidth that propagates between an object of interest and the sensor.
The advantage is clearly that the source radiation comes for free. The downside is that
the atmospheric attenuation and fading effects can quickly degrade the sensor
performance as will be shown below. It is very important to construct a realistic
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Fig. 19. Block diagram of canonical receiver with receiving-antenna effective aperture
Ag, solid angle Qg, and separation from target R.

scenario of the object and the intervening atmosphere to properly predict the remote
sensing performance.

A. Sensor Scenario

Perhaps the most common passive remote-sensing scenario in the mm-wave and
THz regions is the thermal signal with a thermal background, as shown in Fig. 19.
Between the target (brightness temperature Ts) and the sensor detector there is assumed
to be an attenuating atmosphere whose physical temperature is Ty. In addition,
telescopes or other optical components placed between the target and detector add to the
attenuation, creating an overall transmission factor T, which can be significantly less than
unity. For simplicity, the object is assumed to fill the field-of-view of the passive sensor
so that each spatial mode of the receiver is subtended by the target. We assume further
that the temperature of the target, the atmosphere, and the background are all sufficiently
high that hv << kgT. Hence the following expression can be used from Sec. II for the
thermal power incident in each of the M spatial modes

Pinc,m = kB 'AV'[TA 'TB +(1_TA)'TM] .

where only the term dependent on Ty is actual signal. From the analysis of Sec. I.D, the
fluctuations in this thermal radiation absorbed by the detector can be estimated by

- M
(AP,,)’ =[277m](h VoAv) fo(fo + 1) = M -7 (KT - AV)

73



1000
] #W
100
2 10 E NEP’ g0 = 10°° W/HZ Y3
° "
<}
= 1E
Iﬁ:— F NEP’ gect = 1Q —~— Av =100 GHz
X 0.1 E /=100()GHZ
[ [
] 0.01 E
[ =1000 GHz
Y ooo1 g /
00001 a— AV =100GHz
3 Radiation-Noise Limit -\rzloooGHZ
0.00001 — —
100 1,000 10,000

Center Frequency [GHz]

Fig. 20. Curves of NEAT vs v, parameterized by various values of the NEP,..;and Av.
Also shown is the number of spatial modes assuming vg= 75 GHz. Other
important parameters are: Af =30 Hz (consistent with live-video requirements),
To = 1.0, and n = 0.5 (all modes), and Ts = Ty =290 K.

where the effective temperature is defined by Ter = T4 Tg + (1-14) Ty, This expression
will include the quantum-noise limit as a special case. The following sub-sections will
evaluate four passive sensors with this thermal signal and radiation noise as the basis.

B. Direct Detection with Classical Square-Law Detector

B.1. General Analysis

In Sec. VII.C an approximate general expression was derived for the NEP of a
mm-wave or THz direct detector in terms of absorbed radiation fluctuations and the
electrical NEP. For the present passive scenario in the Rayleigh-Jeans limit and
assuming all spatial modes have the same value of 1, this expression is given by

NEP,;, = 717\/2'(APABS)2 -Af /Av +(NEP,,)*
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live-video requirements), n = 0.5 (all modes), M =45, and Ts =Ty = 290 K.

= \/2‘(kBTeﬁ )2 ‘M - Af ’AV/77+(NEPeIect /'7)2 (50)

The appropriate sensitivity metric in this case is the NEAT defined as in Sec. IV
but now in terms of just the source brightness temperature. From the expression above
we have dP;,/dTg = M-kg ‘T4 -Av, so the NEAT is given by

— NEPAD _ -1 2 2 51
NEAT =ap_/ar, =" \/2~TeﬁAf /(M -57-AV)+[NEP,,., /(7-M -Kg - AV)] (51)
In the event that the first term in the radicand dominates, we obtain

Teh‘

NEAT =— /2. Af - (M -7-Av)"!

Ta
The condition on receiver sensitivity for reaching this limit is simply that the electrical
NEP satisfies

NEP, o <kgT 2:77-M-Af -Ay

Eqn 51 becomes useful in evaluating the performance of direct-detection sensors
once the parameters are known. From Sec. III the number of spatial modes can be
estimated using M = Qpoy/Qp zInt(vO/\/R)2 + 1 where vy is a reference frequency,
assumed here to be 75 GHz. The external coupling efficiency per mode is assumed to be
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n = 0.5. The post-detection bandwidth is assumed to be 30 Hz consistent with live-video
requirements. The center frequency v, instantaneous bandwidth Av, and atmospheric
transmission are best left as parameters since these are the most flexible or variable
parameters from an engineering or phenomenology standpoint. Fig. 20 shows the NEAT
vs v, for three different NEP’ .« values and two different Av values. Also shown is the
number of modes vs v, for vg = 75 GHz. In all cases NEAT drops monotonically with v,
simply because M increases quadratically — there is no other vy dependence in Eqn 51.
An increase of Av decreases NEAT at any given v, , but a decrease in NEP,; is effective
only down to roughly 10™"° W/Hz"2. This is because of the radiation noise arising from
the 290-K source and atmosphere. The reader may note that the literature is replete with
cryogenic mm-wave and THz bolometers having far lower values of NEP, consistent
with operation in upper-atmospheric and astronomical sensing where the background
radiation noise is far lower than in the present scenario.

Fig. 20 also reiterates the point made in Sec. VI.A.3 of how important center
frequency is to sensitivity. A detector having NEP’ .. = 10 W/Hz'? is relatively easy to
obtain for room-temperature operation, but can provide an NEAT only between roughly 1
and 20 K at a 1000-GHz center frequency — not considered sensitive enough for most
applications. But this same detector can provide NEAT between about 0.01 and 0.2 K if
operated at a center frequency of 10 THz (A = 30 um). The explanation is, again, the
increase in the number of spatial modes, which also explains why “uncooled” detectors
can be used as the basis for sensitive cameras at roughly A = 10 um and shorter
wavelengths. But the reader should note that the present analysis assumes all spatial
modes contribute both signal and noise, which is increasingly difficult to achieve when
the frequency goes well into the infrared.

A second interesting plot from Eqn 51 is NEAT vs NEP’.; , parametrized by
Av and 15 . The center frequency, number of modes, and mode coupling are fixed at 500
GHz, M=45, and n = 0.5, respectively. The resulting curves in Fig. 21 show, again, the
asymptotic approach toward the radiation-noise-limited NEAT for NEP’ ., < 107
W/Hz"? . To get a useful sensitivity of, say NEAT ~ 0.1 K with 14 = 1.0, the NEP’ ¢
can be no worse than about 10™"" W/Hz"? — a performance that is hard to achieve at room
temperature if one also requires M = 45 and n = 0.5. As 14 degrades, the required
NEP’ ¢ also drops until T4 ~ 0.01 (-20 dB), when the radiation noise then limits the
NEAT to values above 0.1 K. Hence for passive thermal imaging it is imperative in the
THz region to choose the center frequency carefully as a trade-off between NEP,j.,
number of modes, and atmospheric transmission. From the atmospheric transmission
curve of Fig. 5(a), a compelling choice of center frequency would be the highest-
frequency “good window” centered around 9 cm™ (270 GHz).
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FPPY

Fig. 22. Equivalent circuit of mm-wave/THz direct detector.

B.2. Detector-Specific Analysis

In many types of THz direct detectors, the more specific model of Fig. 22 is
applicable which allows one to make first-principles estimates of the NEP and other
metrics. The input RF impedance is represented by Z;,, and the rectification process is
represented by power-dependent-current source of rms amplitude, ip, which is related to
the average power absorbed in Z;, through the responsivity R and the coupling efficiency
Nm for each incident spatial mode

M
iP =R Pabs: R [Z M I:)inc,m]

The thermal and shot-noise generators represent the noise contributed by the detector
itself. In a more general analysis, there would be a third generator representing cross-
correlation between these two. But in many THz detectors, either the thermal or shot-
noise generator dominates the other so the cross-correlation becomes insignificant. The
noise contributed by all of the remaining electronics after the detector is lumped into one
thermal generator, T,. This term is generally dominated by the first amplifier that occurs
in the post-detection circuit. Note that this circuit model handles the RF noise as well as
the signal entering the device. Hence, given the thermal model for fluctuations of the
radiation absorbed by the device and assuming, again, that Py, , = Pi./M, we can write

I:)inc S 2
S (%'VZ%)

( N )AD 2% (i M) (KgTe ) (Av - AF) +(AQ,)* +(AV,)* - (Gp)* +4kgT, - Af /R,

>

so that the NEP,p can be written

2-(keT) -Av-Af | (Ai)* +(AV,)* - (Gp)* +4kg T, -AF /R, (52)
M M

an (mZUm)z

NEP,, =M -

Under the common condition that the incident noise is dominated by the electrical noise
terms, we get the electrically-limited NEP:
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NEPZ: = ML\/(Ain)Z +(AV,)?-(Gy)? +4K,T, - AT /R, (53)
R 7,

These expressions are particularly useful when the individual noise mechanisms for a
direct detector are already understood.

When the noise mechanisms are not understood but the NEP of a direct detector
is already known or are readily measured experimentally, the following forms are more
useful and easily derived from Eqns 52 and 53 above:

2 2
NEP, = |2 M (e AV-AT | e,

M
>,

B.3. An lllustrative Example: Schotty-Diode Direct Detector

The Shottky diode is one of the oldest and best understood of the THz detectors.
Detection and mixing depend on the nonlinear rectification properties of a metal-
semiconductor junction — a phenomenon that has been exploited for over half a century.
The intrinsic sensitivity and frequency conversion properties of the diode are well
described by classical rectifier theory.” One of the strengths of the Schottky diode is that
it can be made to have useful sensitivity over an enormous wavelength range extending
from microwaves to about 100 um. In addition, it is capable of very large instantaneous
bandwidth (limited only by the IF circuit parameters), displays excellent performance
characteristics at room temperature and can be fabricated bin a variety of geometries to
suit various applications. The three most prevalent geometries are the whisker-contacted
honeycomb, the beam-lead diode and the planar or surface-oriented diode. Each of these
will be discussed later in terms of their applications as submillimeter-wave mixers.

Independent of the particular geometry, the I-V characteristic of a Schottky
diode is fit quite well by the expression’

_ ev [ [l -1)v 54
| = I{CXP{UKTJ ﬂ exp{ T, } (54)

where 1 is the ideality factor (>1.0), Ty is the junction temperature, and Is = RT,* exp(-

edyi/ksT))A where R is the Richardson coefficient (= 4.4 A/cm?/K?) and ¢, is the built in
potential. Typically in 100-GHz to 1 THz region the ideality factor of Schottky diodes is
12 to 1.3.7  The first exponential term represents the normal thermionic emission
current while the second term is mainly due to two tunneling components, field emission
and thermionic field emission. The relative importance of each of these terms depends
on both the temperature and the impurity concentration in the epitaxial layer. At room
temperature and relatively low impurity concentration, the thermionic component usually
dominates. A satisfactory fit to the I-V curve is then obtained by the more familiar

expression | = | S[eXp{e%kT }_ 1]
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According to the seminal theory of Torrey and Whitmer,* the low-frequency
short- circuit voltage responsivity can be estimated directly from the I-V curve by the
expression

2 2
g 1dit/av (55)
2 di/dv

The dependence on the second derivative generally leads to maximum sensitivity for
forward bias at the “knee” of the I-V curve. The short-circuit physical noise after
detection can be approximated by the three terms: (1) Schottky-diode “full” shot-noise
(AQ)* = 2elp, Af, (2) the Schottky-diode thermal noise term that goes as (Ai)* = 4kgT) G Af,
and electronic noise all lumped into the current generator (Ai)* = (4kgTy /Ra) Af. Note
that the Schottky thermal noise is intended to account for both the series resistance and
differential resistance of the device. We also assume that the radiation noise power
absorbed by the detector is negligible, so that the specific NEP can be approximated as,

NEP,, = é\/Zel o +4k.T, -G, + 4k T, /R, (56)

It is illuminating to compute Eqns 54, 55, and 56 for a typical THz Schottky
diode made of GaAs and coupled at 100 GHz to an antenna having a THz impedance of
100 Q. We assume the diode has an area of 2 square micron and an ideality factor of
1.2. We assume the output amplifier has a noise voltage of 1 nV/Hz"* and a noise
current of 1.0 pA/Hz"” . The resulting I-V curves at 77 K, 200 K, and 300 K are shown in
Fig. 23(a). The short-circuit responsivity of Torrey&Whitmer is shown in Fig. 23(b),
including mismatch with the antenna. The corresponding curves of NEP vs bias voltage
are shown in Fig. 23(c). These curves demonstrate an important reality about direct
detection: it is difficult to make the detector noise dominate the electronic noise that
follows it, and it is even more difficult to make the detector noise dominate the radiation
noise.

The limitations introduced by the electrical noise of direct detectors and the
following electronics has been a problem since the early days of the THz field.
Traditionally, this problem has been approached by the use of cryogenic detectors,
particularly those operating at 4.2 K (vaporization point of liquid helium) and below.
There is a wealth of literature on cryogenic direct detectors, particulary a myriad of
different types of bolometers. It is not the purpose of this article to reiterate , but rather to
examine the alternative receiver architectures for what may operate at room temperature.
This leads us to the next three architectures, all of which have the potential to
significantly out-perform the direct receiver under room temperature operation.
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C. Heterodyne

In the interest of brevity, we analyze only the case of classical heterodyne
detection as occurs routinely with Schottky-diode mixers, hot-electron bolometers, and
other mixer types. From Sec. VII we have an expression for the SNR in the IF section
immediately after down-conversion that includes the noise contribution from the mixer
itself and the following IF electronics

(ij _ (77R)2 ) Gmix ) |:)inc
N Juer  7r "G -hvio "B

We multiply each term by the gain of the entire IF amplifier chain G along with the
responsivity of the square-law detector. To the LO “shot-noise” of the denominator we
add the noise figure of the entire IF amplifier chain according to the Friis formula of Sec.
III. The implicit assumption here is that, as for most heterodyne receivers, the IF gain is
high enough that the noise contribution of the square-law detector and electronics
following it are negligible. Because the IF band is generally at much lower frequency
than the mm-wave or THz radiation, any losses in coupling to the square-law detector can
be lumped in Gy, and we obtain

(E) — [mD 'GIF '(UR)Z 'Gmix'Pinc]z
N /o 29{20 AGi 7r "G v B +(77R)2 "Gy "B -G - NEPn'ﬂxer}z (Af/By) (57)

_ (7" - Pue)’
2:-4ng -hvo +(77R)2 -NER,

mixer

}2 '(Bu: 'Af)

This leads to the following useful expression for the NEP in active detection

1-(2B,)"2 = Mooy

et

NEP,, = {hv, /775 + NEP.

mixer

Assuming once again that the incident signal is thermal noise contained in the same
(single) mode as the local oscillator, we have P;,. = kgTp Af = kgTgBir , so that in passive
detection

NEP,,  hv, 2
dP,./dT Myer - Ke ?w

inc

NEAT,,

Fig. 24 shows curves of the NEPygt before detection and the NEAT 5p after detection for
various values of nNygr and Byg.
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Fig. 24. Noise temperature and NEAT vs LO frequency of double-sideband
heterodyne receiver having an IF bandwidth of 10 GHz.

Several of the popular detector types can operate in both as direct detector and
mixers. A good example is the Schottky diode. Based on the above analysis, the
following rule-of-thumb relationship between the heterodyne and direct NEP values can
be found: NEP izt = (NEP’ AD)z/PLO _ From the analysis of the generic Schottky diode in
Sec. IX.B, we would have a room-temperature direct NEP’ s, of about 3x107"2 W/Hz'? at
300 GHz. Then given a local oscillator power of 1 mW, one would predict a heterodyne
NEP of 9x10*' W/Hz, corresponding to a nygr value of 0.02.  These numbers are all
reasonably close to the experimental reality.

D. Pre-Amplified Direct

We have seen that the electrical-noise limit in direct detection arises from the
fact that the responsivity of the direct detector, at least the Schottky diode detector, is
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limited. So intuitively, one would expect to be able to improve the sensitivity of a direct
receiver through pre-amplification, provided that the gain of the pre-amplifier is suitably
high and the noise figure is suitably low. To determine how good the amplifier has to be,
we apply the noise formalism to the architecture of Fig. 13(a). To get the signal
absorbed by the square law detector, we multiply the P;,. in each mode by the input
radiation coupling coefficient ng,, (i.e., the fraction of incident power in each mode
absorbed by the amplifier) and the amplifier available gain Gy, for that mode

M
SBD = (ZGm 'UR,m : Pinc,m)2

Any mismatch between free space and the amplifier is lumped into ngm, and mismatch
between the amplifier and the direct THz direct detector is lumped into G,,, .

The mean-square power fluctuation absorbed by the amplifier depends, of
course, on the type of radiation being detected. If the radiation being detected is thermal,
the fluctuations can be approximated in the Rayleigh-Jeans limit by

M
(Apabs)z = (Z Mrm (kgTg 'AV)Z Géj + (PAMP)2

M
= ZUR,m 'ann (kgTg 'AV)Z +[G,, - (Fp = 1) - KgTyyp 'AV]2

where P,,, is the rms noise power contributed by the amplifier, F,, is amplifier noise
figure for mode m, and Tj is the background temperature. We can substitute this into the
mean-square power fluctuation term in Eqn 49 to get the signal-to-noise ratio at the
output of the square-law detector:

M
s R Gy * Prean)”
(v

- M
2R 11, -Ga - (KeTg - AV)’ +[Gy - (Fy = 1) Kg Ty - AV} - (AF / Av) + (AX)?

We also assume that the signal fluctuations in the detector and the following electronics

are Gaussian, so that detector electrical NEP scales with the post-detection bandwidth Af

and we can write
M

S [ER : (ZGm TR * Pinm,m)]2

- M
2R? '{an G (KgTg - AV)’ +[G,, - (F,, = 1) - KTy - AV]L - (AF /Av)+(‘R- NEP,

N

J - af

elect

At the present point in time, solid-state amplifiers only operate in the sub-THz
region and, like local oscillators, are designed only for one spatial mode. This simplifies
the performance analysis to the “unimodal” expression,

(i) — (iR ) I:'inc TR G)z
N 282 -{ 75 -G (KeTy - AV) +[G - (F =1)-KgTygg - AV }-(AF /Av) + (- NEP,,, ) - Af

elec
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amplifier gain and parametrized by direct detector NEP’ .. and RF
bandwidth Av. The amplifier noise figure is fixed at 6.0 dB.

Thus the NEP is given as follows:

NEP,, = \/2 1 (kgTo) + 75" (F =1)-KgTygg '} (Av- A )+ (NEPy, /7, -G - Af

or

NEPA'D = \/2‘{77le .(kBTB)Z +[77I':’1 «(F-1)- kBT300]2} “(Av)+ (NEPevlec /(1% 'G)z
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The unimodal assumption and the Rayleigh-Jeans approximation also facilitate
the computation of the NEAT using the fact that the incident power per mode

is Pinc = kT -Av and dPi /dT ~k, -Av. We find

P - - :
dPli;CdT\ - \/2 R () + 175+ (F 1) Ty P AAV) + (NEPy, (7 -G -kyAv )

Fig. 25 shows plots of NEP and NEAT for the pre-amplified direct receiver
under the following conditions. Fig. 25(a) shows the NEP vs the amplifier gain
parametrized by three values of RF bandwidth: 1 GHz, 10 GHz, and 100 GHz and three
values of NEP for the direct detector 10° W/Hz », 107! W/Hz ”, 10> W/Hz *, Fig.
25(a) clearly shows that the NEP curves saturate with increasing amplifier gain at levels
consistent with the amplifier noise. The quantum-limited NEP under each condition is
also shown according to the expression derived in Sec. VI for direct detection of a
thermal signal,

NEAT =

E. Pre-amplified Heterodyne

An intriguing possibility in the millimeter-wave band and lower end of the THz
range is a preamplifier feeding a mixer element. As in Sec. IX.D we will analyze this
only for the unimodal case since that is, by far, the most effective way to design and
construct amplifiers and local oscillators alike. To simplify the expression, we will also
assume that the local-oscillator photon noise dominates the incoming radiation noise — an
assumption that will obviously become more questionable as the amplifier gain increases
(ij _ [R5 -Gie 77 - Grnix *Gre  Pac)’

NJw 2R5GEGH {7k - (Gee -hvig -Bie)® +[Gee (F =1)-Kg Ty - Bie I’ + (Bye - NEP)°} - (Af /By )

_ (77 - Gre ~ Puc]’
21175 - (Gge 'hVLo)2 +[Gre (F-1)- kEsTsoo]2 +('NEPmixer)2}(BlF -Af)

This leads to a performance in active sensing of

NEPy = /{72 (o) +1(F 1) KyTyo I + (NEPer /Gre '} (2-Byr) (58)
TR

and a performance in unimodal passive sensing of

1 ,
NEAT =—— —{7: (hvio)" +[(F ~1)-KeTu I + (NEP,
R B
Eqn 58 has the following satisfying properties.  First, if the gain of the
preamplifier is high enough to overcome the mixer noise, the resulting NEP has the form

NEF’,;D = L\/~{77R(h Vl_o)2 +[(F —1)-kBT300]2}-(2- Bir)
Mr

If the noise figure is also high enough that the amplifier noise dominates the photon shot
noise

/GRF)Z}'(Z/ Bn:)

ixer

F>1+77R(thO):1+ 77RVLO >
KeTo0 6.248x10

and we get the “amplifier-limited” expression
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NEP,, = (F=DKeTw 55—
MR

Presently, all known solid-state room-temperature amplifiers operating in the millimeter
or THz regions satisfy this condition. = The plots of amplified-heterodyne receiver
performance are shown in Fig. 26. For active sensing, the NEP in Fig. 26(a) clearly
increases monotonically with increasing By for any value of G or NEPx;.. And each
case shows a monotonically decreasing value of NEP’ down to a minimum value defined
by the amplifier noise limit given above. The NEP also drops inversely with receiver
coupling efficiency.

In a passive sensor, the amplified-heterodyne receiver provides the performance
shown in Fig. 26(b). The NEAT now decreases with increasing By just as in the
canonical heterodyne receiver. Again, the NEAT saturates at a minimum level
corresponding to the amplifier limit. In comparison to the amplified-direct or canonical
heterodyne, the amplified-heterodyne provides one advantage in terms of reaching the
amplifier-limited performance with a relatively poor mixer performance. As shown in
Fig. 26(a), the limit defined by a 6-dB-noise-figure amplifier can be achieved with a
mixer having an nyer =0.01 (NEP = 6x10™'® W/Hz) and an amplifier gain of just ~ 10 dB.
But the receiver can still reap the benefits of a superheterodyne receiver in terms of
frequency selectivity defined in the IF rather than the RF. At the present time, this seems
particularly advantageous for all-room-temperature operation where LO power is either
difficult to generate or difficult to distribute to the mixer. One example is imaging arrays
where LNAs would be simpler to implement than local oscillators. The reason for this is
that LNAs have become monolithic integrated circuits whereas local oscillators in the
mm-wave and THz regions are still discrete components. Worse yet, the local oscillators
often require low frequency synthesizers to multiply up harmonically and act as the
reference for the fundamental oscillator at the LO frequency.

X. Issues and Performance of Active Sensors

By the definitions given in Sec. I, active sensors are those that provide their own
illumination of separated targets and objects using a sub-system called the transmitter.
The job of the transmitter is to provide enough coherent or incoherent radiation at the
target to get a measurable reflection or transmission of this radiation at the position of the
receiver. The source of the radiation has long been the bane of the mm-wave and THz
regions, tending to become more difficult and weaker in power as the frequency increases
above 30 GHz. Historically, the best sources for this radiation have been vacuum-tube
devices, such as oscillators driving traveling wave tube amplifiers below about 100 GHz,
and fundamental vacuum oscillators (e.g., backward wave oscillators) above 100 GHz.
Such sources are notoriously expensive and cumbersome once the high-voltage power
supply is factored in. Researchers have long sought after solid-state sources to provide
the transmit power. Until recently, the power levels and limited
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tunability have generally been sufficient to make only local oscillators, not free-space
transmitters.

A. Active Sensor Scenario

By combining a transmitter (Tx) with a receiver (Rx) oriented as in Fig. 19, a
coherent or quasi-coherent signal is sent out by the Tx, is reflected or transmitted by the
object or target, and is then collected by the Rx where it is rectified from RF (THz) to
baseband either by a direct or coherent receiver. The target might be a cloud or a
partially transparent object, for example. For purpose of maximizing the received signal,
the relative orientation of the Tx and Rx is very important.

If the object or target is best observed in transmission, then for good
performance the Rx is best located along the direction of the transmitter radiation but on
the opposite side of the object. An alternative (see Sec. X.D below) is to place a
retroreflector on the opposite side of the object and co-locate the Rx next to the Tx. If the
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object or target is best observed in reflection because of a strong back-scatter effect, then
Tx is best configured to produce a quasi-collimated beam, similar to the “large-waist”
beam plotted in Fig. 11.

A common goal of all three of these Tx-Rx orientations is that the received
power, as defined in the Friis analysis of Sec. III.F, should fall with separation r between
the Tx and Rx by ~1/r* or slower. This is in contrast to the typical 1/r* decay that occurs
in conventional radar, where the 1/r* factor from the far-field Tx radiation is multiplied
by a second 1/r* factor based on assumed isotropic scattering from the target or object.
Although the 1/r* factor is considered accurate for long-range radar, particularly at
microwave frequencies and below, it is unnecessarily pessimistic for the relatively-short
range applications being pursued with mm-wave and THz sensors. Two good examples —
concealed-weapons detection and all-weather navigation — are addressed later in Sec. XI.

To get the receiver SNR and ROC performance, one first needs to know how
much of the transmitted power is collected by the receiver. For scatter-free atmospheric
propagation, the instantaneous signal power at the receiver (Rx) can be estimated
analytically given reasonable assumptions about the Tx power and beam patterns. For
simplicity, we make the following three assumptions: (1) the Tx radiates only the one
fundamental spatial mode of its antenna, (2) the width of the Tx and Rx beams are much
smaller than the lateral extent of the target at every point where they pass through, and
(3) the Tx and Rx antennas are perfectly aligned such that the peaks of their patterns are
anti-collinear. The Rx incident power can then be approximated by the Friis formula
(II1.18) in the case of perfect beam and polarization alignment:

2
Pro(v) = ooty (59)
(47)°R
This can be considered as a worst-case estimate if the Tx fundamental mode is a
Gaussian beam having a Rayleigh length comparable or greater than R.

In the active sensor with direct- or pre-amplified direct detection, the Rx noise
power will generally be the sum of at least two terms in addition to the electrical noise of
the front-end electronics: (1) radiation fluctuations in the coherent received power and (2)
radiation fluctuations of the background thermal radiation. In the Rayleigh-Jeans limit
these become:

- M
(AI:,abs)2 = Zﬂm : {(kBTeﬁ : AV)2 + (hvo PincAV)}

In the active sensor with heterodyne- or preamplified-heterodyne down-conversion, these
must be added to the local-oscillator photon fluctuations, which is done below.

It is interesting to solve for the incident power that makes the photon noise
dominate the thermal noise in the above expression. Under this condition one would
expect to achieve a photon shot noise limit similar to that discussed in Sec. VI
Substitution from Eqn 59 yields the condition

(KgTyq )’ - Av(4r)*R?
"7 hy, -GG A - (v)
We estimate this for a typical terrestrial case: Ter = 300 K, Av =1 GHz, R = 100 m, vy =
300 GHz, Gt = Gg = 1000 , A = 1 mm, and t = 0.1. The result is Pt > 1.4 mW - an
available power level, even from solid-state technology.
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A facilitating consequence of the limited THz Tx power is that the coherent
radiation term can usually be neglected in the above expression. As shown below, this
greatly facilitates the sensitivity analyses and leads to the “background limited” case for
active mm-wave and THz sensors.

B. Transmitter Types

B.1 Continuous Wave

The preferred source of cw radiation practically anywhere in the RF bands is that
derived from solid-state electronics. The situation for solid-state sources in the mm-
wave and THz region has changed dramatically in recent years with the development and
continual improvement of MMIC-based solid-state power amplifiers operating around
100 GHz. The reader is referred to a review article for more details.”> Although outside
the scope of this chapter, it is important to recognize that SSPAs are a great enabler for
sensors in the mm-wave and THz regions alike. Around 100 GHz they can be used as the
basis for power-combining networks to produce power levels far above that possible from
fundamental oscillators. Around 300 GHz and above, SSPAs can produce useful power
levels (> 1 mW) and high tunability by acting as the driver for varactor multiplier chains.

Besides cost, size, and ability to integrate, another benefit of solid-state sources
is modulation. Sensors, like communications systems, general provide some form of
analog or digital modulation on the carrier so that the transmitted signal has, for the
analog case, the form S(t) = A(t)cos[® t + ¢(t)], where A is the amplitude and ¢ is the
phase. Pure amplitude modulation implies ¢ (t) is a constant and pure phase (or
frequency) modulation imples that A(t) is a constant. In either case, modulation allows
improvement of performance or mitigation of the atmospheric and fading effects
described in Sec II.

The standard methods of detecting modulated radiation exist as readily at mm-
wave and THz frequencies as they do at microwave frequencies and below. For an AM-
encoded carrier, the standard demodulation technique is either envelope detection or
square-law detection. It can be shown that an envelope detector is the better performer
when the pre-detection signal-to-noise ratio is greater than unity, and the square-law
detector is better when the pre-detection SNR is below unity.”® Because mm-wave and
THz sensors have generally operated under the latter condition, square-law detection as
discussed in Sec.V should be optimal or nearly optimal in most demodulation
applications.

B.2. Pulsed: T-Rays

Pulses transmitters were first developed for radar to get range information
through the classic time-of-flight and range-gating techniques. This has not become an
issue yet in THz systems made with solid-state sources. However, pulsed transmitters
have become interesting for a different reason — if the width of a pulse becomes
significantly less than 1 ps, then Fourier analysis shows that it contains significant
spectral density in the THz region. Mode-locked lasers, particularly those based on dyes
or Ti:sapphire crystals have been developed to the point where they routinely generate
~200 fs pulses or shorter. If such a pulse is used to excite an ultrafast- photoconductive
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switch (i.e., Auston switch), then the photocurrent from this switch will have THz
components. And if the photocurrents are, in turn, coupled to a THz antenna, there will
be significant free-space THz radiation.

Important questions are how much power a T-ray transmitter can produce and
what the sensitivity of the receiver can be. The Tx power can be estimated roughly from
the way photoconductive switches work, which is the application of enough peak energy
from the mode-locked laser pulse to short-circuit the switch for some fraction of the laser
pulse width t, . If the switch is biased with voltage Vi and is coupled to a THz antenna
with radiation resistance R,, then the peak THz power available for radiation from the
antenna will be roughly (Vp)”Rn and the THz pulse energy will be roughly
(t,/2)(Vs)"/Ra . The average THz power Py will then be Py & fiep(ty/2)(V)*/Ra where
fiep is the laser repetition frequency. Note that the mode-locked laser power does not
enter this estimate provided that it is great enough to short the photoconductive switch at
the peak point.

For example, the typical ultrafast photoconductive switch is made of a short-
lifetime (~ 1 ps or less) material, such as low-temperature-grown GaAs, exposed between
two low-capacitance electrodes, such as a square gap in a THz planar transmission line.
To make the switch easily shorted by a mode-locked laser pulse, it can not be made too
large in area, 100 square microns being typical. The safe bias voltage is then ~20 V. A
Ti:sapphire mode-locked laser typically produces 200 fs pulses at ., * 100 MHz. These
values results in a peak THz pulse power of 4 W, a THz pulse energy of 0.4 pJ, and an
average THz pulse power of 40 uW. This is not too much greater than the maximum
values that have been measured by several researchers in the field, which is typically in
the range of 1 to 100 pW.”" While very useful for laboratory spectroscopy and imaging,
these power levels are not yet considered to be high enough for remote sensing
applications. With the continuous advances being made in photonics and optoelectronics,
T-rays are an intriguing prospect for future pulsed THz applications.

C. Receiver Types

C.1. Direct Conversion with Classical Square-Law Detector

To get a useful estimate of the sensitivity of an active sensor in the present
scenario, we start with the generic expression for the SNR of a direct-detection receiver
from Sec. VII, written for one spatial mode. To this we add the two above expressions
for the incident power and the radiation fluctuations, resulting in

2
P.G,G,
S {’7 anr Y

(NJAD B 2. UN {(kBTeff ! Av)z + (hVOPincAV)} : (Af /AV) + (77 : NEF)e’IeCI)2 - Af

As discussed above, the range, RF bandwidth, and antenna-gain requirements in mm-
wave and THz sensors along with the limited Tx power often lead to the condition where
the thermal-background radiation noise dominates the coherent incident radiation noise.
This allows us to simplify the SNR to the following form
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This expression has great utility, but for the sake of brevity only one form will
be given here. This is the noise equivalent transmit power, NEPr, analogous to the

NEAT for a passive sensor observing a thermal source.  Setting the SNR to unity, we
find

2
NEP; = (4R)

= m\/z (kg )*(AF -Av) /17 + (NEP,, ) - Af
TR

or in the more convenient specific form

(47R)*

m\/2.(kBTeff)zAv/n+(NEpe'lem)2 [W/Hz"]
r-G,G,

NEP; =

Note that this expression could also be arranged in terms of the range at which the sensor
SNR would be unity at each possible transmit power. This is the normal way to think
about active sensors (i.e., radars) at microwave frequencies where transmit power is not
so hard to come by.

In the event that the first term in the radicand dominates in either expression
above, we obtain a “background-limit” analogous to that of passive sensor:

(47R)* K Ty

NEP, =
T 1.G,G A

N2-Av-Af I

Fig. 27 shows a plot of the NEP’1 as a function of range parametrized by the
electrical NEP and the atmospheric transmission factor. It is clear that even at moderate
range, the worst-case direct detector having an NEP’ .., of 102 can not provide useful
sensitivity under any atmospheric condition unless the transmit power is >> 10 mW. So
one would be advised in an active receiver with direct detection to use an NEP no worse
than roughly 10™"* W/Hz"? .  According to Eqn 60 this produces an SNR of 1.0 with
approximately 1 mW of transmit power at a range of 1 km.

C.2. Heterodyne and Homodyne Conversion with Classical Square-Law Detector

In passive sensors the source spectrum is generally thermal radiation so is
naturally very broad. Hence, mixing with a local oscillator will generate a broad IF
spectrum and heterodyne conversion works very well. By contrast, with an active

91



1000
NEP

' e =1010 W/HZY2 e - /

100

10

0.1

0.01

NEPT [W/Hz"1/2]

0.001

NEP

=10-13 W/Hz2

elect’

0.0001

0.00001 L
1.0E+02 1.0E+03 1.0E+04

Range [m]

Fig. 27. Noise equivalent transmit power for the active sensor with a direct-detection
receiver as a function of range separating the transmitter and receiver. The
lines are parametrized by the net atmospheric transmission factor t and the
direct-detector NEP’... The other parameters in the curve are Gr = Gy =
100, =0.5.

sensor heterodyning can occur only if the Tx and Rx local oscillator are deliberately
offset in frequency, which then requires a more sophisticated receiver (e.g., in-phase and
quadrature processing) to maintain good sensitivity.  This is practical in the millimeter-
wave region but becomes expensive and cumbersome at THz frequencies. In the latter
region there is a tendency to build sensors that use the same oscillator for both the Tx and
LO functions. This results in a homodyne receiver, as described briefly in Sec. IV.

To get a useful estimate of the sensitivity of an active sensor in the present
scenario, we note that both heterodyne and homodyne receivers can be described by the
generic Eqn 57 for the post-detection SNR in a single spatial mode with radiation noise
dominated by the LO photon shot noise. To this we add the above expression for the
incident power to get the surprisingly simple results

P.GGA | P.GGA |
H.p 2. I212RY H.I2T2R%
{ T 4y R T(V)} { (47)°R? T(V)}

(ij - - (61)
N/ 2'{77R’hVLo+(77R)2'NEPmixer}2'(B'Af) 2'{hVLo/77HET}2'(B'Af)

where B is the post-mixer electrical bandwidth (centered about zero for the homodyne
case) and the factor H =1 and 2 for heterodyne and homodyne conversion, respectively.
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This then leads to the noise equivalent transmit power

_ (hvio /1uer J(AR)’ N2 - B
7-G,G A

Similar to the direct-detection case, this can be plotted vs range with t and
Nuer as parameters. The results are shown in Fig. 28 where the vertical axis is now
shown in units of uW/Hz"?. Here we see a very large improvement in performance
compared to the direct detection case. On first inspection this seems a bit incredible with
even relatively poor heterodyne or homodyne mixers resulting in outstanding sensitivity.
For example, a sensor in which the receiver mixer has an nygr of 0.5% achieves an SNR
of unity for a transmit power of 0.01 uW per (Hz)"? of post-detection bandwidth over a
range of 1 km and an atmospheric transmission of 0.1. This means that for a more
practical transmit power of 1 mW and a post-detection bandwidth of 1 MHz — enough to
accommodate AM or FM modulation to help mitigate atmospheric and gain fluctuations -
the SNR would be approximately (10~*)/(0.01x10)/(10%)"* = 100.

NEP;

D. An lllustrative Example: Design of an active sensor to measure
absorption signatures

Recent measurements of the electromagnetic transmission through Bacillus
subtillus, an anthrax surrogate, has revealed absorption signatures at sub-THz
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Fig. 29. Representative absorption signature in the terrestrial atmosphere.

frequencies.”® The physical origin of these signatures is still being investigated, but from
the measured absorption strength and signature one can begin to estimate their detectability
in a remote sensor. This is not to imply that the resulting THz sensor will be better than
competitive sensors in other (e.g., IR and visible) spectral regions.  Rather, this problem
serves as an interesting example of how the THz region may offer unique phenomenology
in the form of unique absorption Signatures not present in other electromagnetic regions.
This is similar to the recent use of THz radiation for medical imaging. In that case, the THz
provides unique contrast between tissue types that is proving useful in diagnostic imaging.

D.1. Absorption Signature Characteristics

A representative absorption signature is shown in Fig. 29 as it might appear in
the power transmitted through a cloud of bioparticles. As discussed above, the
background transmission in the THz region generally has a complex behavior. Although
shown as a slowly increasing transmission with frequency, the background could display
the opposite slope or be resonant depending on the proximity to water absorption lines.
In any case the bioparticle absorption introduces a broad “dip” in the transmission
spectrum that is characterized by a minimum transmission T, at frequency vy, , The
goal is to characterize the signature in a way that can be used in the active sensor
scenario.

Table 1. THz absorption signatures of B. Subtillus

Freq: Vmin Qo (Vmin) Vback » AV T (Vback)
(cm™) (GHz)

421.5 GHz 0.7 430.5,10.0 | 025

619.5 GHz 1.3 600.0,19.5 | ~10™"

940.05 GHz 1.7 930.0,10.5 | ~5x10™

1075.5 GHz 1.2 1057.5,180 | <107°
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To do this we characterize the dip by a depth At, and a half-width Av. At is the
absolute difference between 1, and the background transmission Ty, measured at a
frequency vy, on whichever side of vy, that t is greater (e.g., in Fig. 29 Vyuex >> Vinin)-
Hence, AV =[Viin- Veaek|. We assume further that the concentration of bioparticles p is low
enough for their attenuation to be described by a coefficient a that is linearly dependent
on p and that affects the transmission through the Lambert-Beer law t(v) = exp[-
ao(v)Lp/po], where L is the thickness of the bioparticle cloud and o, is a reference
attenuation coefficient measured at a concentration p, that may be much different than
the actual p. Then if the background is slowly varying over Av, we can write

AT =Tpage = Ty = €XP[=0 (Voaa )LO/ Py ] —exp[—ay (Vi )LO/ Py ]
% Ty 11 = XP[=0) (Vi )LO/ Py 1}

Listed in Table I are the values of Vi, , 0o(Vmin)s Voack and Av derived from
laboratory transmission measurements through dry films of B. subtilis (an antrax
surrogate) containing po ~ 1x10'? cm™ — a density that is necessary to get an accurate
measure of Ao, but is much larger than expected in airborne bio-warfare agents. The
results listed in Table 1 describe four different absorption features having center
frequencies between 421 and 1075 GHz. In the THz region, the remote detection of these
signatures depends critically on the atmospheric transmission (V). Upon analysis of
the results of PCLnWin shown in Fig. 5, the most transparent frequency by far is 421.5
GHz through which the single pass attenuation is approximately 0.25 (i.e., -6.0 dB) over
a path length of 1 km at sea level and at 60% relative humidity .

D.2. Sensor Design: Direct and Homodyne Differential Absorption Radars

To take advantage of the At we imagine an active sensor such as that shown in
Fig. 30. The transmitter contains a frequency agile source that can hop between the two
frequencies, keeping the transmit power constant. To make the scenario a bit more
practical, we suppose the Tx and Rx are co-located and used with a retrodirective mirror
that is perfectly specular. We can thus write for the difference in incident power
between the two frequencies:
P.G,G, - A’

(87R)’

In practice one can readily do this frequency hopping periodically (e.g., square
wave) and then synchronously demodulate in the post-detection portion of the receiver,
assuming of course that Af is greater than the modulation frequency. In this case, the post
de-modulator signal-to-noise ratio will be approximately the difference in the SNRs
given by Eqn 61 between the two frequency states with a reduction factor f,, for the
inefficiency of simple (e.g., AM) demodulation schemes. This results in the post-
detection SNR for a direct receiver of

AP (v) = Az(v)
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Fig. 30. Block diagram of active sensor designed for differential absorption detection of a
cloud of weak bioparticles at a short standoff (~ 1 km). The receiver is based on
direct detection.
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and an SNR for a heterodyne (or homodyne) receiver of
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As a practical matter, note that one can readily do this frequency hopping periodically at
a much higher frequency than the rate of change of the atmospheric fading effects. Then
by synchronously demodulating the signal at the receiver and taking the ratio between the
two frequency states, one can cancel the effect of atmospheric fading.

Note that in a homodyne version of Fig. 30, because the transmitter and receiver
are co-located at the same point in space, only a few components would have to be
changed in the THz front-end. First, the direct detector would be replaced by a mixer,
such as a Schottky diode. Then, a portion of the transmit power would be coupled
through a THz transmission line to the mixer where it would be coupled to the mixer as
an LO. Finally, an IF circuit would be added that could process both the in-phase (I) and
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Fig. 31. SNR performance of differential-absorption radar with direct-detection receiver.
In (a) the detector is a room temperature Golay cell, and in (b) it is a cryogenic
(4.2-K) bolometer.

quadrature (Q) components of the mixer output. The sum of the I- and Q-detected
channels would then, in principle, recover all of the signal power of the received

coherent signal, independent of phase difference(s) between the received signal and the
LO.

D.3. Direct and Homodyne Sensor Performance at 425 GHz

Figs. 31 (a) and (b) show the post-demodulation SNR at three different
concentrations of B. subtilis, p = 10, 10°, and 10° cm™ for the direct-detection transceiver.
The results are plotted vs cloud depth for a fixed Tx-to-cloud separation of 0.5 km and a
transmit power of | mW. The other scenario parameters are listed in Table II.  In Fig.
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31 (a), the Rx detector is assumed to have NEP=1x10"" W-Hz'? corresponding to a
state-of-the-art room-temperature bolometer (e.g., Golay cell). In Fig. 31(b) the Rx
detector is assumed to have NEP = 1x10™* W-Hz " corresponding roughly to a state-of-
the-art cryogenic (4.2 K) bolometer (e.g., silicon composite).

The results on overall senor performance are now determined by comparing
these SNR curves to the universal ROC curves of Fig. 16. For example, according to Fig.
31(b), in a cloud 20 m thick at a stand-off of 0.5 km, the SNR 1 is 1.0 for a concentration
of 10° cm™. Assuming that the signal threshold at 0.2 nW, we find Pd and Pfa values
from Fig. 16 to be approximately 0.4 and 0.1, respectively — unsatisfactory for most
applications. However, the enhanced SNR at greater cloud depth or higher concentration
in Fig. 31(b) would result in more reliable detection. For example, a cloud depth of 20 m
and a concentration of 10* cm™ would yield an SNR of 10 and associated Pd and Pfa
values of 0.75 and 0.006 if the threshold was also increased to 0.9 nW.

For the homodyne case, we assume the down-converting device is a Schottky-
diode mixer. If driven hard enough (PLo ~1 mW) so that the noise-equivalent power
(NEP) is limited by LO-shot noise and the coupling efficiency n is usefully large, we find
NEPyer ~ hvmper = 5.6x10" W/Hz (h = Planck's constant) for v = 421 GHz and nygr =
5%. The calculated SNR4p curves for coherent detection are plotted in Fig. 32 for the
same bioparticle concentrations as in Fig. 31, and the same transmit power and range.
The homodyne receiver is assumed to have an IF bandwidth B of 1 MHz and the post-
detection bandwidth of 1 KHz. Note that for a given cloud depth and bioparticle
concentration, the coherent post-detection SNR is approximately 300 times larger than
the analogous post-detection SNR of the incoherent sensor in Fig. 31(b). In other words,
a homodyne receiver operating at room temperature is approximately 300 times more
sensitive than a direct receiver with a cryogenic (4.2 K) detector under the same sensor
scenario.

Substitution of pre-detection SNR results of Fig. 32(a) into the ROC curve of
Fig. 18 leads to the following exemplary results. When the cloud depth is 20 m and the
concentration is 10° cm™, the SNR in Fig. 32(a) is approximately 16 and we find from
Fig. 18 that P4 ~ 0.99 for Pi, = 107, P4 ~ 0.95 for P, = 10™, and P4 ~ 0.90 for Py, = 107,
each possibility corresponding to one particular threshold level. Clearly, the homodyne

Table II. Parameters used in sensor simulation

Background temperature (K) 290
Detector coupling efficiency 0.5
Line center frequency (GHz) 421
Background frequency (GHz) 431
Linewidth (GHz) 10
Line center abs coeff (1/cm) 0.7
Background transmission 0.25
Spectral bandwidth (GHz) 10
Integration time (s) 1.0
Transmit power (mW) 1.0
Tx aperture (cm’) 100
Rx aperture (cm®) 100
Tx-Rx separation (m) 1000
Cloud thickness (cm) variable
Cloud temperature (K) 290
Molecule density (cm™) 10,10°,10°
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Fig. 32. (a) Pre-detection SNR of homodyne receiver in the differential-absorption
radar scenario. (b) SNR after square-law detection and synchronous
demodulation. The parameters are nger = 0.05, NEP = 5.6x10% W/Hz.

receiver yields a far superior performance in comparison with the direct receiver. With
this superior SNR, one can envision an early-warning system in which the presence of
bioparticles sets off an alarm based on the envelope of signal plus noise exceeding a
threshold set in baseband.

XI. 2D Imaging and the Quest for Popular Applications
A. Heuristics

A holy grail of sensor technology in the mm-wave, THz or any other band of the
electromagnetic spectrum is the capability to do imaging of objects at a useful stand-off
in real or near-real time. This capability is motivated, of course, by the appeal and utility
of live-video and television. The appeal needs no explanation. The utility goes well
beyond the entertainment or practical impact of live video and involves such issues as
pattern and object recognition. The fact remains that the human visual-cognitive system
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Fig. 33. Schematic diagram of optical spatial sampling

(i.e., the combination of the eyes and the brain) is still much better than computers or
other information machines at recognizing objects surrounded by other objects or hidden
in “clutter.” And a good, if not the best, way to couple the imagery to the visual-
cognitive system is a two-dimensional live image.

The live-video advantage has driven sensor technology since the beginnings of
television with continual development of better cameras operating across the visible
band. The early technology, such as that of the vidicon, was essentially an electronic
version of photographic film. The technological breakthrough that revolutionized visible
imagers during the past few decades has been the discretization the imaging process.
The concept is simple: emulate the behavior of photographic film by placing individual
detectors in a dense two-dim array in the focal plane of an optical imaging system. The
detector density required to obtain image contrast comparable to that of the photographic
film are well defined by a version of Nyquist’s sampling theorem applied to free-space
plane waves and imaging — the Whitaker-Shannon (W-S) theorem. This important result
is discussed briefly below and in great detail in many books on Fourier optics and optical
imaging.

The benefits of live video expanded significantly with the realization that
discrete imagers could be readily extended into other parts of the electromagnetic
spectrum where the phenomenology behind free space propagation are different. Perhaps
the best example is the infrared region where it was realized quickly that objects that
might be unapparent to a visible-band imager could be readily apparent to an infrared
imager, particularly one constructed to operate in one of the well-known IR atmospheric
windows from 3-to-5 micron or 8-to-12 micron wavelength. And the phenomenology
behind this realization is as old as quantum physics itself — it is just blackbody, or
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“thermal” radiation. Terrestrial objects tend to have a physical temperature between
roughly 273 and 300 K. According to the blackbody spectral power distribution of Eqn
8, the peak of emission tends to occur between approximately 8 and 10 micron. If the
object in question has a temperature sufficiently lower or higher than the background and
has a sufficiently high emissivity, it will be apparent to the camera either as a dark or
bright image, respectively.

The same reasoning applies equally well to making thermal imagers in the mm-
wave and THz region with the obvious difference that objects at any terrestrial
temperature generally emit much less power than they do in the infrared. On the other
hand, as shown above, the radiation noise is a lot lower in magnitude, particularly the
photon shot noise. So the receiver sensitivity can be much lower in the mm-wave and
THz region. More importantly, the mm-wave and THz regions display some
phenomenological differences beyond the atmospheric and materials propagation
differences discussed in Sec. ILE.  One such difference relates to the difference in
texture and scattering caused by the large difference in wavelength. Air-solid interfaces
that appear rough and, therefore, diffusive, in the infrared can appear relatively specular
in the mm-wave and THz regions A good example is a man-made wall made from a
common building material, such as drywall.

B. Imaging by Spatial Sampling

Conceptually the W-S theorem states that the discrete imager can recover the
same spatial information as from a continuous film if the discrete pixels sample at least
twice per spatial frequency of the highest spatial frequency contained in the image. The
definition of spatial frequency follows from the ability to decompose any spatial
distribution of radiation into a Fourier series of plane waves propagating at different
angles with respect to the axis of propagation. This is readily seen by the construction
shown in Fig. 33. which shows an arbitrary plane wave incident on a periodic imaging
array of period a. From fundamental electromagnetics, the plane wave can be
represented by Egexp[-j(K-r —ot)] where K is the propagation vector and r is the position
of the measurement point in some reference system whose origin is conveniently chosen
as the center of the array. In this case, the vector inner product is k-r = (21t/A) sinf (m-a),
where A is the free-space wavelength and m is an integer. In order for this phase factor
to be unambiguous between neighboring elements (m = 1) of the array, it must lie in the
range —7 to 7 since this comprises one entire branch of the Argand plane. Hence, the
(un)ambiguity condition becomes (27t/A) |sinf| a < =, or

a<M(2|sinb)) .
This is often written as
sinB| /A < 1/2a

which has the same form as Nyquist’s sampling theorem if we recognize 1/a as the spatial
sampling rate, sinf/A as the spatial frequency, and 1/2a as the Nyquist sampling rate.
These simple equations have several interesting properties, one of which relates
to the maximum allowed spacing of the elements. For an antenna or optical front-end
providing a very wide angular field-of-view, 6 will vary from nearly —m/2 to w/2, the
maximum |sin O] will approach 1, and thus the element spacing must be < A/2 for
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unambiguous imaging. This is a familiar result from phased-array antenna theory, where
it is usually stated in the reciprocal sense: i.e., the maximum spacing that array elements
can have and still radiate “unambiguous” beams is A/2. The ambiguity is manifest in the
antenna performance through radiation directed into grating lobes.

Spatial sampling places just an upper limit on a, so that one is free to space the
elements arbitrarily closer with no penalty on performance. This is analogous to “over-
sampling” in signal processing, and can be unnecessarily expensive and complicated. So
the actual element spacing is usually determined, as in visible and infrared imaging
arrays, by spatial resolution requirements, which are a strong function of diffraction
effects in the optical or antenna components in front of the array. Once the diffraction
effects are determined, which is usually done by spatial resolution requirements of the
sensor as a whole, there is no point in placing the elements in a center-to-center spacing
smaller than the diffraction-limited diameter for a plane-wave incident on the sensor.

Note that strictly speaking, the above considerations apply only to a sensor
having phase sensitive, or coherent, elements. In other words, each element must be
connected to coherent receiver. The analogous conditions for an incoherent imaging
system are a factor-of-two different and discussed in great detail with an emphasis on
mm-wave and THz imaging in the excellent review article by Rutledge et al.”

C. Applications and Examples of MM-Wave Imagers

A practical advantage of mm-wave and THz imagers over visible and infrared
ones is packaging. Because of the much greater maximum pixel spacing that generally
applies, the former imagers can be constructed with “macroscopic” spacings of the order
of | mm. This fact has been utilized for decades through the construction of first one-
and then two-dimensional arrays of incoherent thermal detectors. Perhaps the first such
array and associated camera system was engineered in the 1970s using a linear-array of
pyroelectric detectors and later productized by Spiricon, Inc. The single-pixel NEPpr
values were approximately 10® W/Hz "> . While good enough for some applications,
such as THz laser beam diagnostics, the sensitivity was not adequate for most remote
sensing. Later it was realized that the mm-wave and THz coupling efficiency to the
pyroelectric elements was not very good because of low absorption coefficient in the
typical (ferroelectric) materials. And the old trick of blackening the surface of the
elements with graphite-loaded paint was not nearly as effective as in the mid-infrared
region where pyroelectric detectors in “uncooled” bolometer arrays continue to be very
useful.

By the late 1970s it was realized that to make widely useful mm-wave and THz
imaging cameras, significant improvement would be required in the radiation coupling
efficiency. Considerable research was conducted on planar antennas coupled to free
space through dielectric substrates, cavities, and by other techniques. This culminated in
the first room-temperature two-dim incoherent imaging arrays made from bow-tie
antennas coupled to bismuth microbolometers.’,*> Somewhat later the first coherent
imager was developed and demonstrated, this time using a linear array of Schottky diode
mixers coupled to bow-tie antennas.®’ Both were developed and demonstrated primarily
for plasma diagnostics — an area of widespread research, particularly after the energy
crisis of thel1970s.

During the mid to late1980s the strong push for plasma imaging had waned, and
the primary system pull for mm-wave and THz imagers came from the radio astronomy
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community.®* It was recognized that some of the cryogenic detector types that had been
developed in the 1970s for high-sensitivity astronomy applications were amenable to
fabrication in planar arrays. Two examples were LHe-cooled composite bolometers for
direct detection,”” and superconductor-insulator-superconductor tunnel junctions for
coherent detection.* Although these concepts have proven to be successful, they were
not quick to develop largely because of the difficulty in fabricating and packaging
cryogenically cooled devices and read-out electronics.

The interest and activity in imagers increased significantly in the mid 1990s with
two developments. First, monolithic microwave integrated circuits based on GaAs
devices improved to the point where they could provide superior performance to discrete
components in the mm-wave band. Perhaps the first example of this was the low-noise
amplifier (LNA). Second, two compelling mm-wave applications where identified that
offered a compelling advantage over visible and infrared imagers: (1) concealed weapons
detection and (2) all-weather imaging for aircraft landing.

The sensing of weapons concealed behind human clothing is a natural one for
mm-wave and THz sensors since clothing is, by design, opaque in the visible and more or
less opaque in the infrared depending on the fabric. For the same reason that plastics are
quite transparent to mm- and THz waves, so are most of the common fabrics. One of the
first, if not the first, demonstrations of concealed weapons was made by engineers at the
Millimetrix Corp®,® using both active and passive mm-wave arrays. Although not
highly integrated, these demonstrations showed that images of concealed guns could be
of high enough quality to allow identification by a human observer.

Around this same time engineers began pursuing mm-wave imagers for all-
weather imaging systems. People had long known that this was a natural application
because of the size advantages of mm-wave components over lower-frequency RF ones,
and the superior mm-wave propagation compared to that in the visible or infrared. The
drawback of this application was always size and cost. The development of MMIC
LNAs has made preamplified direct detection possible up to at least W band (75-110
GHz) in array architectures. Probably the most successful of these has been the passive
camera developed and demonstrated by TRW for all-weather landing.*”*® Below 100
GHz, it utilizes their GaAs pHEMT process to produce LNAs having < 3 dB noise figure
up to approximately 100 GHz. It has also been developed for 140 GHz using InP-based
MMIC technology.”

More recently, a two-dimensional array of Nb microbolometers has been used in
an active imaging array.”® This work has shown excellent imagery at real-time
acquisition rates.
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