
ECE594I, Prof. Brown, Fall Quarter 2009 

1 

Homework Problems #1: Fundamentals of Radiation and Fluctuations 
 
1. Planck’s law of radiation is a triumph of quantum physics and very useful in many fields of 

science and engineering.  (a).  Given a 300 K blackbody of unity emissivity, find the 
frequency in THz (accurate to 100 GHz) and the wavelength in micron where the brightness 
form of Planck’s law is a maximum (can use numerical or analytic techniques).  (b) What is 
this maximum brightness in MKS units ? (c) what is the brightness of this same blackbody at 
1.0 THz and how much less is this than the maximum ? 

2. A useful function for practically any electromagnetic sensor is the integrated brightness [i.e., 
integrated over frequency].  (a) Derive an expression for the integrated brightness IB in terms 
of the temperature and the Stefan-Boltzman constant, σ = (2πh/15c2)(πkBT/h)4. (b) Evaluate 
IB at T = 300 K.   (c) Now consider the fractions of IB that lies above and below a certain 
“cutoff” frequency, IB(>νc) ≡  ∫νc

∞ B(ν)dν and IB(<νc) ≡  ∫0
νc B(ν)dν [both are very useful in 

evaluating the “background” radiation for photon and thermal detectors.].  In the THz region 
and for terrestrial sources, one can generally apply the Rayleigh-Jeans approximation, 
hνc/kBT << 1.  In this case, derive an expression for IB(<νc), and then IB(>νc).  (d) Evaluate 
IB(<νc) for νc = 1 THz and T = 300 K.  [suggestion: consult Eisberg&Resnick for an 
interesting discussion on the genesis of Planck’s law and the Stefan-Boltzman constant].   

3. THz Radiation Filter:  (a) Suppose one is using a thermal detector (e.g., Golay cell) that is 
approximately equally sensitive to IR and THz radiation.  Clearly, a low-pass filter is 
desirable to attenuate (i.e., “stop”) the IR but “pass” the THz.  For the first approximation, 
one can assume that the low-pass filter has a power transmission function, T = |S21|2 = τ⋅θ(ν – 
νC) + θ(νC – ν), where θ is the unit step function and τ is the “average” transmission above ν-

C.  (a) Assuming that the filter is operated at room temperature but does not emit any 
radiation towards the detector, and that νC satisfies the Rayleigh Jeans limit, write an 
expression for the value of τ that makes the incident power on the detector from ν >νc equal 
to that from ν <νc.  (b) Evaluate this τ for νc = 1 THz and T = 300, and state the answer as 
an insertion loss in decibel units. (c) In the stop band region what is a better type of 
attenuation for the filter to have: absorptive or scattering ?  State your answer qualitatively 
assuming that the filter can be fabricated as a uniform film that completely intercepts the 
incoming radiation to the detector ?  [clue: there are two reasons for the correct answer, one 
of which involves Kirchoff’s law of radiative transfer].   

4. Fluctuations of Radiation: the quantum picture.  Given the quantum statistics for radiation 
based on  Boltzman and Planck, it is simple to derive the fluctuations from general principles 
of probability theory.  

(a) Derive the variance or mean-square fluctuations, <(∆nK)2> for the radiation modeled as 
photons having the energy function UK = (nK + ½)hωK, where nK is the number of photons in 
mode K. [clue: start with the Boltzman (exponential) PDF and utilize the general result for 
random variables, <(∆nK)2> = <(n - <nK>)2> = <(nK)2> - <nK>2 ]. 

(b) Use the above expression to calculate the root mean square fluctuations of incident 
power in a single spatial mode from the sun within a spectral bandwidth of 1 GHz at the 
following two center wavelengths: (1) λ = 0.5 mm (THz region), and (2) λ = 0.5 micron 
(visible region).  Express your answer in MKSA and in dBm (decibels relative to 1 mW).  
[clues: make the narrow passband approximation in both cases; approximate the sun as 
having a brightness temperature of 5800 K]. 


