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HW#3 Solutions 
 
1) To evaluate the feedhorn, start with F(θ,φ) = exp(-10 θ2) , 

(a) Half-power beam width defined by ])2/(10exp[5.0 2β−=   where β is the full width at the 
half-power points.   

Solving f or β, we get 
2/1]10/)5.0ln([*2 −  = 0.53 rad = 30.2o. 

(b) The pattern solid angle is 
( ), sinp F d dθ φ θ θ φΩ = ∫∫  

But this is not integrable in θ (try mathematically to verify this using a symbolic integration 
code, such as Mathmatica or Maple).   So we take advantage of fact that the pattern given has but 
a single main lobe, and approximate by spherical trigonometry YXP ββ≈Ω  .  From part (a) β = 
βX = βY = 0.527, so ΩP = 0.277 steradians.  But a better way to estimate ΩP  (as discussed in 
lecture) is possible since the beam is symmetric 
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where F(θ,φ) is approximated as unity over the cone full angle β.   This so called “ice-cream-
cone” approximation leads to ΩP ≈ 2/

0
cos2 βθπ−  = 2π(1-cosβ/2) = 0.217 steradian.  

(c) The antenna directivity is: 
       D = 4π/ΩP ≈ 4π/0.277 = 45.4 (according to pencil beam approximation) 
       D = 4π/0.217 = 57.9  (according to “ice-cream-cone” approximation) 
(d) Smax at range of 10 cm is just Prad/(4πr2)⋅D  = 4.6x10-5 W/cm2 in “ice-cream-cone” 

approximation. 
 
2) Dish with circular beamwidth of 1.5o. 
(a) For pencil-beam case, D ≈ 4π/(βxβy).  For the dish, β = 1.5*π/180o = 0.026 rad. 
So, D ≈ 4π/(0.026)2 = 1.84x104 or D = 10log10[1.84x104] = 42.6 dB 
(b) If dish area is doubled, we expect the directivity to also double consistent with Dmax = 4πA/λ2, 
and the beamwidth should decrease consistent with 4π/(βXβY) = 4πA/λ2.  So new directivity 

43.66 10 45.6D dB= × ⇒ .    And the new beamwidth β = 1.5o/(2)1/2 = 1.06o = 0.018 rad. 
(c) If antenna frequency is doubled to 800 GHz, new directivity should go up four times 
consistent with Dmax = 4πΑ/λ2 = 4πAf2/c2.  So the new directivity is D = 7.32x104 or 48.6 dB.  
And the new beamwidth should decrease by a factor of two consistent with 4π/(β2) = 4πAf2/c2, 
so β = 1.5o/2 = 0.75o = 0.013 rad. 
(d) If used as the primary antenna in a receiver, the available power is just Pavail = STx*Aeff = 
STx*DRxλ2/(4π) where STx is the transmitter radiated intensity at the receiver.  From antenna 
theory applied to the transmit antenna, the maximum STx (at the pattern maximum) is just 
DTx*Prad /(4πr2) where Prad is the total radiated power.  Overall we have 
                                          Pavail = Prad*DTx *DRxλ2/(4πr)2 , 
(Friis’ transmission formula).  The best estimate of from 3(c) is D = 57.9, so with Prad = 1 mW 
and r = 1 km, we find the maximum STx = 4.6x10-9 W/m2. So with DRx = 1.84x104 from 2(a) and 
λ = 0.75 mm (400 GHz), we find Pavail = 3.8x10-12 W. 
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(e) We assume the dish is unimodal, so that according to the Rayleigh-Jeans limit of the 
Johnson-Nyquist theorem, Pnoise = kBT∆ν = 4.1x10−11 W for Τ = 300 Κ and ∆ν = 10 GHz.  
Setting this noise power equal to the Pavail in Friis' formula and solving analytically for r, we find 
 

r = {Prad*DTx *DRxλ2/[(4π)2 (kBT∆ν)]}1/2 

which is called the “range” in radar and communications theory.  When evaluated under 
the above conditions, we find r = 303 m. 
 
3. (a). The key point is that even up to THz frequencies, the electrical conductivity of SI 
GaAs is so low that it can be treated as an ideal dielectric.  From general 
electrodynamics, the intrinsic impedance is then defined by η = η0/(εr)1/2, where εr is the 
low-frequency.   Looking in any good book on semiconductors, we find εr = 12.8, so η = 
105.4 Ω, and the average dielectric constant at the interface is εave = (1 + εr)/2 = 6.9. 
(b). The interface velocity is just v = c/(εave)1/2 = c/nave = 1.14x1010 cm/s.   So the 
approximate physical length of a dipole antenna on the surface of the GaAs that will 
display a half-wave resonance at 600 GHz is Lhalf = λave/2 = vave/(2f) = 95 micron.  By the 
same reasoning, the approximate physical length of a full-wave dipole antenna at 600 
GHz is Lfull= λave = vave/(f) = 190 micron. 
(c) An inspection of this terms shows that it always displays a maximum at θd = π/2 from 
L = 0 to at least L =  λ, and the magnitude of the maximum increases monotonically from 
0 (kL = 0) to 1 (kL = π; half wave) to 4 (kL = 2π; full wave).  A graphical proof of these 
facts is shown in Fig. 1, as computed using Excel. 
(d) By definition, the beam pattern function has to include all the angular dependence of 
the radiation and be normalized with at the angle in space where the time-averaged 
Poynting vector displays its maximum.  According to the expression given for an 
arbitrary length dipole, all the angular dependence must be in the term 

2
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 This becomes the beam pattern function F(θ,φ)once it is normalized to the maximum at 
θd = π/2: 
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Fig. 1. 
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4. (a) The total radiated power is found by integrating the Poynting vector from φ = 0 
to π, assuming that the radiation propagates into the substrate side only) 
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In general this integral can not be reduced to closed form, so a numerical method is 
required.  The use of the Matlab function, quadl.m, for example results in the θ integral 
being 1.219 for L = λ/2 (kL = π) or equal to 3.318 for L = λ (kL = 2π).  So the total 
radiated power is 

Prad = 10.2⋅ I0
2 for L = λ/2 

and Prad = 27.8⋅ I0
2  for L = λ. 

(b) The directivity is found from D = 29.3
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(c) Assuming at the resonance condition that Xant = 0, the radiation resistance is given 
by 2

02 /rad radR P I=  =20.4 Ω for L = λ/2, and Rrad = 55.6 Ω for L = λ.   
(d) To see why the full-wave dipole provides a higher radiation resistance than the half 

wave dipole, we first recognize that both antennas display an open-circuit condition at 
the ends of each dipole arm.  As a result, for the half-wave antenna I0 at the gap will 
correspond to the peak in the current distribution along the dipole arms.  And for the 
full-wave antenna, I0 will correspond to the null in the current distribution.  In other 
words, it takes a much smaller I0 to produce the given current distribution for the full-
wave antenna than for the half-wave antenna. 

 
 
Numerical Integration for Problem 4: With symbolic representation, numerical 
integration can be carried out with two lines in the Matlab Workspace: 

(1) for L = λ/2. >>  f(x) = inline(‘(cos(pi./2.*cos(x))./sin(x)).^2.*sin(x)’) 
                                >>  y = quadl(f,0,pi) 

(2)  for L = λ,  >>  f(x) = inline(‘(cos(pi.*cos(x))+1)./sin(x)).^2.*sin(x)’) 
                         >>  y = quadl(f,0,pi) 

Note: quadl in Matlab uses the adaptive Lobatto algorithm. 


