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HW#4 Solutions 
 
(1) (a) the skin depth is given by δ = (πf µ0σ)−1/2.  By looking up the conductivity values, we get 

the skin depths shown in the following table 
Material Cu Au Al Cr Sn

Conductivity [S/m] 5.80E+07 4.50E+07 3.50E+07 7.75E+06 9.17E+06
Frequency [GHz]

10 0.661 0.750 0.851 1.808 1.662
100 0.209 0.237 0.269 0.572 0.526
1000 0.066 0.075 0.085 0.181 0.166
10000 0.021 0.024 0.027 0.057 0.053

Skin Depth [micron]

 
(b) call the width of the strip a, the thickness b, and the length L.  The current is confined to an 
annulus around the strip of thickness δ, periphery 2a + 2b, and area δ(2a+2b).  Therefore the 
series resistance is RS =  ρL/A = ρL/[δ(2a+2b)], and the specific series resistance RS

’= ρ 
/[δ(2a+2b)] = RS

’= 1/{σ[δ(2a+2b)] }.  For example, in gold (one of the most common 
metallizations used at THz frequencies) the skin depth from (a) is 0.075 micron and Rs’ = 
1.56x104 Ω/m or 15.6 Ω/mm 
 
c) For any TEM transmission line represented by the figure given, the complex propagation 
constant is given by γ = [((R’ + jωL’)(G’ + jωC’)]1/2 where R’ is the specific series resistance 
(same as RS’ above), L’ is the specific series inductance, G’ is the specific shunt conductance, 
and C’ is the specific shunt capacitance.  Here we can ignore G’ since the coax will either be 
filled with air or some low loss plastic materials such as Teflon.  Assuming R’ is << ωL’, (to be 
checked self consistently), the characteristic impedance Z0 =(L’/C’)1/2.  So for the given values, 
we find L’ = 2.5x10-7 H/m, which leads to the following table: 

Frequency [GHz] Rs' [Ω/mm] ωL' [Ω/mm] 2*Real(γ) [1/mm]
100 4.9 157.1 0.10
300 8.5 471.2 0.17
600 12.1 942.5 0.24  

Note that at all frequencies Rs’ << ωL’, so our assumptions are self-consistent.  Also note that 
the power attenuation (absorption) per unit length, which is twice the imaginary part of γ, is 
modest because the units are neper/mm.  So at 600 GHz, the power on this transmission line 
drops to exp(-0.24) = 0.78 (-1.0 dB) after one mm, or 22% of the power is absorbed.  However, 
in 1 cm, it drops to exp(-2.4) = 0.089 (-10.5 dB) or 91% of the power is absorbed.  At THz 
frequencies, it is important to keep transmission line lengths as short as possible ! 
 
(2) (a) the THz dielectric constants ε and associated refractive indices n of the given materials 

are listed in the following table.  The critical angles are given by βC = sin-1(1/n) 
Material Re ε (par) Re ε (perp) n (*) theta c [deg]
Teflon 2.10 2.10 1.45 43.6
Rexolite 2.53 2.53 1.59 39.0
Mylar 2.80 2.80 1.67 36.7
Crystalline Quartz 4.34 4.27 2.07 28.9
Sapphire 11.50 9.40 3.07 19.0
high-rho Si 11.90 11.90 3.45 16.9
SI GaAs 12.80 12.80 3.58 16.2  

(*) for optically anisotropic materials, the Re ε (perp) was used to compute n . 
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(b)  from HW#3 we have an estimate of the power radiated into the substrate side of a planar 
dipole of physical length L,  
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For a full wave dipole (L = λ or kL = 2π), this evaluated to Prad = 27.8⋅ I0
2 on a GaAs substrate (η 

= 105.4 Ω).   If total internal reflection is occurring, then a good approximation is to assume any 
radiation outside 90 – βC < φ < 90 + βC will be totally internally reflected.  Similarly, any 
radiation outside 90 – βC < θ < 90 + βC  will be so reflected .  Since our dipole pattern has no φ 
dependence and kL = 2π, we can immediately write for the fraction of power that can possibly 
radiate out 
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This is an easy integral to evaluate numerically and the results are shown in the following table 
where the power trapped is defined as the evaluation [(1) - (2)]/(1).  Please note that this is just 
an approximation since we have not accounted for reflection coefficients and other effects. 

Material beta c Integral Power Trapped [%]
Air 90 27.8 0.00
Teflon 43.6 13.3 0.52
Rexolite 39 11.6 0.58
Mylar 36.7 10.8 0.61
Crystalline 28.9 7.9 0.72
Sapphire 19 4 0.86
high-rho Si 16.9 3.3 0.88
SI GaAs 16.2 3.1 0.89  

 
(3)  Focusing of THz Gaussian Beam in free space using a thin lens of focal length f. 
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Propagation through distance d2 then yields:  
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But at second waist R→∞, so
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Now we can equate real and imaginary parts separately: 
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This is a classical pair involving 6 parameters.  Often, all parameters are known (or fixed 
by the experiment) but two, so a unique solution for these can be found.  For example, if 
λ, f, d1, and ω01 are known, the solution for d2 and ω02 become  
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The first expression can be re-written in terms of Rayleigh length: 
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Logically, for a second beam waist to occur on the right side of the lens, we must have d2 > 0, 
which means that 0)/()( 22

0111 >⋅+−⋅ ffddf λπω  or 1
22

011 /)/( ddf λπω+< = d1 + (Z01)2/d1 

 
(b) Using Excel, we plot d2 vs f under the stated conditions, as shown below.  As shown in (a), 
there are positive solutions for d2 when f < d1 + (Z01)2/d1 = 20.88.  But clearly at any f within this 
range, there are two possible values of f for each d2, except right at the peak in the figure near f = 
17.2 and d2 ≈ 50. 
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(c)  When d2 = 10 cm, we find from the graphical analysis above (and more accurately by 
numerical analysis) that f = 6.81 cm or f = 20.44 cm.  Clearly f = 20.44 cm is a more practical 
design because it will require much less curvature on the lens and, therefore, less spherical 
aberration and other problems (e.g., machine tool marks or steps) that come with high curvature. 
 
(d) Equating imaginary parts of the Gaussian-beam transformation equation yields the expression 
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None of the five parameters in this equation can be negative since the focusing would not occur 
on the right side of the lens.  So to get the smallest possible ω02, one should let d1 approach 
infinity and d2 approach f from the high side.  In this case, ω02 will approach zero.  Although 
physically admissible, this is not a practical solution because as d1 gets much larger than Z01, the 
spot size of the Gaussian beam incident on the lens from the left side will grow much larger than 
the aperture of the lens.  This causes “spillover” – a deleterious effect whereby incident radiation 
misses the lens entirely and, therefore, does not get focused. 

 
(e) To avoid “spillover” d1 is usually constrained.  And d2 is usually constrained by the size of 
the experiment or receiver.  So one can write d1 + d2 =  D.  If we are free to choose f, then we 
can consider (2) as a function of f and differentiate ω02 with respect to f, subject to the constraint 

from part (a) ddf /)/( 22
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no zeroes with respect to f (although it does have zero at d2 = d1, the so-called “confocal” 
solution, and a singularity at f = d1), and thus has no value of f that minimizes ω02.  Guided 
intuitively by the result of part (d), we seek the smallest f  possible, fmin and expect d1 to be just 
less than D and d2 to be very close, but not quite equal to f.  A useful approximate expression for 
d2 can be found by Maclaurin series expansion (freshman calculus) of (1) about f = 0 with f = 
fmin  
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Evaluating the derivatives (the 2nd derivative being a chore), we get : ...0
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which clearly has the correct behavior as d1 → ∞, d2  → fmin  .  Substitution of this into the (2) 
leads to the useful analytic approximation: 
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This shows that a great decrease in ω02 compared to ω01 can be achieved when d1 or Z01 (or both) 
are >> fmin.   Of course, this is dependent on the quality of the lens, which must be aspherical in 
figure to create this effect without significant aberration.  A comparison of the approximation of 
(3) vs the exact solution from (1) and (2) is shown below for the conditions listed.  The analytic 
form comes in handy in design work and in predicting the Gaussian-beam magnification M = 
(ω01 /ω02) ≈(d1/fmin) for d1 >> fmin and d1 >> Z01 (analytics still has a place in Engineering !) 
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