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HW#5 Solutions 
 

1.  Canonical junction rectification I-V curve, I = I0 [exp(eV/kBT) –1] with generalized Johnson-
Nyquist noise and full shot noise, and operates at 300 K into a load resistance RL . 

(a) The generalized Nyquist theorem states that <(∆I)2> = 4kBT∆νG = 4kBT∆ν(dI/dV) => 4kBT 
(I0e/kBT) exp(eV/kBT) ∆ν = 4eI0 exp(eV/kBT) ∆ν for the canonical rectifier.  Full shot noise is 
given by <(∆I)2> = 2eI∆ν => 2eI0 [exp(eV/kBT) –1]∆ν for the canonical rectifier.  Both of 
these can be associated with random noise current generators in parallel with the device 
nonlinear conductance G = dI/dV.  So for RL = 0, the current from both generators flows 
entirely through the load.  The total is found by noting that the thermal noise and shot noise are 
nominally uncorrelated, so <(∆I)2>tot = 4eI0 exp(eV/kBT) ∆ν + 2eI0 [exp(eV/kBT) –1]∆ν = 4eI0 
∆ν at V = 0, so that Irms = (4eI0 ∆ν)1/2 .  This has an interesting interpretation in solid state 
physics.  Every solid-state rectifier contains a junction (e.g., p-n, metal-semiconductor, etc) of 
dissimilar materials designed to display a highly nonlinear I-V curve.  But at zero bias, even 
such a nonlinear device must return to thermodynamic equilibrium with zero average terminal 
current and a uniform temperature equal to the bath temperature.  However, the heterogeneous 
material nature of the junction always means that there are two competing current mechanisms 
which just balance at zero bias.  In forward bias, one mechanism generally dominate, and in 
reverse bias, the other one dominates.  In the given rectifier device, I0 is clearly associated with 
the mechanism that dominates in reverse bias.  This gets balanced by just enough of the 
forward current mechanism – I0 again - associated with the thermally-activated term, to create 
zero average current at zero bias.  But both terms can contribute to shot noise because they are 
statistically independent current mechanisms !  So each should contribute <(∆I)2> = 2eI0∆f 
fluctuations through the junction, or 4eI0∆f in total. 

(b) If we set the generalized Nyquist noise and full shot noise terms equal, we get the expression 
4eI0 exp(eV/kBT) ∆ν = 2eI0 [exp(eV/kBT) –1]∆ν or 2 exp(eV/kBT) = –1.  Clearly this has no 
solution at any bias. 

(c) If the device is connected to a 50-Ohm load, there will be a current divider action between the 
device and load that depends on bias voltage.  But according to the normal Johnson-Nyquist 
theorem, the noise from the load resistor can also be represented by a current generator of 
4kBT∆νGL connected to the same series pair of the device and RL, so the current divider action 
will be the same as for the device.  And the load noise power will be equal between the when  

       6eI0 exp(eV/kBT)  − 2eI0=  4kBTGL  .  Solving for V, we get V = (kBT/e)ln[(2kBTGL+eI0)/eI0]. 
(d) For RL = 50 Ω and T = 300, the power spectrum is SI = 4kBTGL = 3.3x10-22 A2/Hz. 

 
2. Every component in a receiver chain can be represented by a noise figure, Fi = (SNRin/SNRout)i 

= 1 + (Nadd)i/(Gi kBT300 Bi), where (Nadd)i is the noise added by the ith component, Gi is its 
gain, and Bi is its RF bandwidth.   

(a) Use these definitions to derive Friis’ formula for total noise figure, FT. 
 The output signal from the chain Sout = Sin G1G2⋅⋅⋅Gn ≡ Sin GT . The output noise from the chain 

is: Nout = (Nadd)n + (Nadd)n-1 Gn +…(Nadd)2 G3G4⋅⋅⋅Gn   +…(Nadd)1 G2G3⋅⋅⋅Gn + …Nin G1G3⋅⋅⋅Gn 

 where, by definition, Nin = kBT300B .  Thus, FT ≡ (SNRin)/(SNRout)=(SinNout)/(SoutNin) =  
 {(Nadd)n + (Nadd)n-1 Gn +…(Nadd)2 G3G4⋅⋅⋅Gn   +…(Nadd)1 G2G3⋅⋅⋅Gn + …Nin G1G3⋅⋅⋅Gn}/[GTNin] 
 = kBT300B{(Fn-1)Gn  + (Fn-1 -1)Gn-1Gn  +…(F2 -1)G2G3⋅⋅⋅Gn   +…(F1 -1)G1G2⋅⋅⋅Gn  }/[GTNin] + 1 
 = (Fn-1)/ G1G2⋅⋅⋅Gn-1  +…. (F3 -1)/G1G2 + (F2 -1)/G1 + (F1 -1) + 1  
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Plots of cosn(ωt), n even, up to n = 10.   The average values over one cycle (2π/ω) are as follows: 
ave(n=2) = 0.5, ave(n=4) = 0.375, ave(n=6) = 0.312, ave(n=8) = 0.273, ave(n=10) = 0.246. 

 = (Fn-1)/ G1G2⋅⋅⋅Gn-1  +…. (F3 -1)/G1G2 + (F2 -1)/G1 + F1  
(b) For X = 30 dB, application of the above formula yields FT = 2.34 , or 3.69 dB 
(c) In the limit of high X, G2 becomes so large that FT -> F1 + (F2 -1)/G1 = 2.29, or 3.60 dB. 

Application of Excel Goal Seek (or trial and error) shows that X = 19.1 dB yields a 1-dB 
degradation to FT to 4.60 dB (or 2.88 linear). 

(d) If the BPF and LNA are interchanged (LNA coming first) with X =30 dB, we find FT = 1.63 (2.13 
dB), a 1.56-dB improvement over the case in (b) above !  This is a good example of how important 
the ordering of components can be in RF receivers, particularly the passive components. 
 

3.  Power-law device represented by Xout (t) = A[Xin(t)]n ≡ ℜPin, n = 2 being the square law. 
(a) There are a number of ways to prove that the square law is the most effective rectifier, the 

simplest being to let Xin(t) be a pure sinusoid, say cos(ωt) and averaging Xout(t) over one cycle 
or over a time t = 2π/ω.   For n odd, the result is clearly zero since any odd power of cos(ωt) 
necessarily spends as much time negative going as positive going.  For n even, the function is 
always positive going, as shown in the plot below up to n = 10.  But clearly, n = 2 produces the 
highest average (i.e., dc term) over the cycle of  ½.  The other averages are listed below.  

(b) If Iout = B (Vin)2, then we can Taylor expand about the point V0,I0  and write I = I0 + 
(1/2)(d2I/dV2)(V-V0)2 or if I and I0 are close, I - I0 ≡ δI = (1/2)(d2I/dV2)(δV)2, where δV = V-
V0. .But if we define Pin = (δV)2/R = (δV)2 (dI/dV) , then δI = (1/2)[(d2I/dV2)/(dI/dV)]P ≡ ℜ P 
where ℜ = (1/2)[(d2I/dV2)/(dI/dV)] is the famous Torrey-Whitmer responsivity. 

(c) For the Schottky diode, I = IS{exp(eV/nkBT) – 1}, ℜ = (1/2)(e/nkBT).  For n = 1.0 and T = 300 
K, this becomes ℜ = 19.3 A/W a high number indeed. 


