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HW#6 Solutions  
 
(a) Using the MATLAB script provided in lecture, we generate the N=10 bit “M”-sequence whose 

length is 2N -1 = 1023 “chips”.  The sequence is ordered columwise starting in the upper left and 
ending in the lower right, the last element being an “X”, meaning it doesn’t exist. 

1 1 -1 1 -1 1 1 -1 -1 -1 1 1 -1 -1 1 1 1 1 1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 -1 1
1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 1 1 1 1 1 -1 1 -1 -1 1 1 1 -1 -1 -1 -1 1 -1 -1 -1
1 1 -1 1 1 -1 -1 1 -1 -1 -1 1 -1 1 -1 -1 1 1 -1 1 1 1 1 -1 1 1 1 -1 1 -1 1 -1
1 1 1 -1 -1 1 1 -1 -1 1 1 1 -1 1 1 1 -1 1 1 1 -1 -1 1 1 1 -1 1 -1 1 -1 -1 1
1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 1 -1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 -1 1 -1 -1
1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1
1 1 1 -1 1 -1 -1 1 1 -1 -1 -1 1 -1 1 1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 1 -1 -1 1 -1
1 1 1 1 1 -1 1 1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1 1 1 1 -1 1 1 -1 -1 -1 -1 1
1 1 1 -1 -1 1 -1 -1 1 1 1 -1 -1 1 -1 1 1 -1 -1 -1 1 -1 -1 -1 -1 1 1 -1 1 1 1 1
1 1 1 -1 -1 1 1 1 -1 -1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 1

-1 -1 1 -1 1 1 -1 1 1 1 1 1 -1 1 -1 1 1 1 -1 -1 -1 1 -1 1 1 1 -1 -1 1 -1 -1 -1
-1 1 1 1 1 1 -1 1 1 -1 1 -1 1 -1 1 -1 -1 -1 1 -1 1 1 1 1 -1 1 1 -1 -1 1 1 1
-1 -1 1 1 1 1 1 -1 -1 -1 -1 -1 1 1 1 -1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 -1 1 1
1 1 -1 -1 1 -1 1 1 1 -1 -1 -1 -1 -1 1 -1 1 -1 1 1 -1 1 1 -1 -1 1 1 -1 -1 -1 -1 1
1 -1 1 -1 1 1 -1 1 1 1 -1 1 -1 -1 -1 1 -1 1 -1 1 1 1 1 1 1 -1 1 -1 -1 -1 1 1
1 -1 -1 1 1 -1 1 1 1 -1 -1 1 -1 1 -1 -1 -1 1 1 -1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1

-1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 1 1 -1 1 1 -1 1 -1 -1 1 1 1 1 -1 -1 1 1
-1 1 -1 1 -1 1 1 -1 -1 -1 -1 1 -1 1 1 1 -1 1 1 -1 1 -1 -1 -1 1 1 -1 -1 -1 -1 1 -1
-1 1 1 1 1 1 1 1 -1 1 1 1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 -1 1 1 -1
1 1 -1 -1 -1 1 -1 1 -1 -1 -1 1 -1 -1 1 1 -1 -1 1 -1 -1 -1 -1 -1 1 1 -1 1 -1 -1 1 -1

-1 1 1 1 1 -1 1 1 1 1 1 -1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 -1 -1 1 -1 1 -1
-1 -1 -1 -1 -1 -1 1 -1 1 1 -1 1 1 -1 1 1 1 1 -1 -1 1 1 1 1 -1 -1 -1 1 -1 -1 -1 1
1 1 1 1 1 -1 1 1 -1 -1 -1 1 1 1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 -1 -1 1 1 -1 -1 1
1 -1 1 1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 1 1 -1 1 1 -1 1 -1 1 1
1 -1 1 -1 1 1 1 1 -1 -1 -1 -1 1 -1 1 -1 1 -1 -1 1 -1 -1 -1 -1 1 -1 1 1 -1 -1 1 -1

-1 1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1
1 -1 -1 1 -1 -1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 1 -1 1 1 1 1 1 -1 -1 1 1 -1 -1 -1
1 1 1 1 1 -1 -1 1 -1 -1 -1 1 1 1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1

-1 -1 -1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1 -1 -1 1 1 1 -1 1 1 -1
-1 1 -1 1 -1 1 1 1 -1 1 1 1 1 -1 1 -1 1 -1 -1 -1 1 1 1 1 -1 1 -1 -1 1 -1 1 -1
1 -1 -1 -1 -1 -1 1 -1 1 1 1 1 1 1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 1 1 -1 1 -1

-1 -1 -1 1 1 1 -1 1 -1 -1 1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 1 1 -1 -1 1 1 X  
The chips are in signed-binary format, being either -1 or +1.  Like the NRZ (non-return to zero) 

format in digital communications, this has benefits in the digital signal processing, such as 
allowing multiplications involving this sequence to be replaced by summations [in general, 
summations requires far less hardware resources (i.e., logic gates) than multiplications].  As 
mentioned in the lecture, the M sequences have many special properties that can be tested 
readily in the MATLAB workspace.  Assuming the sequence is stored in the 1023-element 
vector prn, we can execute the command “sum(prn)” and get a return of  “+1”.  This means, of 
course, that there is one more +1 than -1 in the 1023 sequence. 

(b) The standard deviation of any vector can be carried out very quickly in the MATLAB 
workspace using the command “std”.  By typing in “std(prn)”, we get a return “1.0005”.  Since 
the amplitude of the sequence is 1 (i.e., all chips have the same magnitude of 1), this makes 
sense.  Note the standard deviation would be exactly 1.0 if there were an equal number of +1s 
and -1s in the sequence.  

(c) The cross correlation is computed by the following routine that is best copied into a .m file and then 
executed as a MATLAB script. 
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prnprime=prn'; 
crosscorr1=[] 
prn3 = [prn; prn; prn]; 
for icorr=-nprn+1:1:nprn-1 
%crosscorr is the inner product of the row vector xprime and column vector prn3 
%the length of both vectors is nprn 
        crosscorr1(icorr+nprn) = prnprime(1:nprn)*prn3(nprn+icorr+1:2*nprn+icorr); 
end 

 

This results in the cross correlation plot shown in the Fig. 1 above. Note that the horizontal axis is 
shifted so that the autocorrelation for an offset of zero occurs at an index of 1023, 
“crosscorr1(1023)”,  which equals “1023”.    This makes perfect sense.  Any sequence of +1s and -
1s, no matter how long, will produce a zero-offset value of the autocorrelation function equal to the 
length of the sequence.    

More interesting is the autocorrelation function at offsets other than zero.  This is seen 
clearly below by expanding the vertical axis of Fig. 1, as is done in Fig. 2 above.   It is clear that the 
autocorrelation function away from zero offset is always -1.  In other words, the autoccorelation 

function Rxx (i) for offset i satisfies the relation Rxx (i) = ∑ −

N

m
imm xx = N if i = 0, = -1 otherwise.  If 

you happen to have a background in statistics or probability theory, you know how unique this is.   

 
Offset + 1023 

 
Fig. 1. 
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As a demonstration of the uniqueness, let’s repeat the computation of the autocorrelation 
function for a vector representing discrete Gaussian noise.  This is done easily in MATLAB starting 
with the “randn(1023,1)”, which means random number generation of a 1023-length vector having 
a standard deviation of 1.  The resulting vector is shown as a discrete time-domain waveform in  
Fig. 3 (note:  this vector will change every time you execute “randn” in MATLAB, representative 
of a true “random” number generator). Putting this vector through the same autocorrelation routine 
as the PRN sequence, we get the autocorrelation plot in Fig. 4.  

 
Offset + 1023 

 
Fig. 2. 

 
Offset + 1023 

 
Fig. 3. 
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Two key results are obvious from Fig. 4.  At zero offset, the autocorrelation indeed shows a 

peak as one would expect intuitively.  And it is even somewhat larger than 1023, representing the 
fact that the Gaussian statistics allows for fluctuations well beyond the standard deviation (1.0 in 
the present case).  These are clearly evident as the upward or downward going “spikes” in Fig. 3. 
 
(d) The unique autocorrelation function of the PRN sequence in Figs. 1 and 2 arises largely because 
the sequence has only two possible amplitudes, +1 and -1, and because the sequence repeats over-
and-over again in time.  The randomness arises in the mostly random occurrence of these in the 
discrete-time waveform during a given 2^N-1 sequence.  So the PRN sequence displays both 
deterministic and random properties, and therefore is commonly used in digital communications, 
GPS, and radar as either a code or as the signal itself.   

Therefore, an interesting exercise is to assume the signal is a 10-bit PRN sequence 
waveform and add to it Gaussian noise of the same standard deviation, 1.0.  The resulting 
waveform is shown in Fig. 5.  The presence of the PRN sequence is clearly seen as the dark zone 
between -1 an +1.  The presence of the Gaussian component is seen as the spikes going as lows as -
4 or as high as +5.  The autocorrelation function is plotted in Fig. 5.  Not surprisingly, it appears 
very much like the sum of the autocorrelation for the pure-PRN in Fig. 1 and the autocorrelation for 
the pure-Gaussian in Fig. 4. 
 

 

 

 

 
Offset + 1023 

 
Fig. 4. 
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(e) The input signal-to-noise ratio (SNR) is computed as the ratio of the input-signal variance to the 
input-noise variance, where the variance is the square of the standard deviation.  We take the 
variance because the SNR is always in terms of power (or energy), and the PRN and Gaussian 
sequences are signals (voltages or currents).  The variance of the input PRN sequence portion of 
Fig. 5 is very close to 1.0.  The variance of the Gaussian component in Fig. 5 is also 1.0 (by 
design).  So the input SNR is 1.0. 
 
(f) The output SNR (after the correlation) requires some explanation.  In the discussion of the 
“matched-filter” concept, the intuitive goal was to “compress” all of the energy available from the 
signal into a narrow “spike” in the time-domain output, and then sample the output at this time 
only.  From Fig. 6, the output signal power is proportional to the square of the peak of the 
autocorrelation function at zero offset, which is 1046^2 = 1.09x106. The noise is the fluctuation of 
this value over an ensemble containing a large number of samples.  Because the autocorrelation 
function of a PRN M-sequence has no fluctuations, all the fluctuations seen in Fig. 6 can be 
associated with the random Gaussian noise added.    For these, an ensemble average is the same as a 
long-time average (ergodic hypothesis).  So the fluctuation in peak in Fig. 6 can be estimated from 
the variance of a large number of values of the autocorrelation function away from zero.  Let’s 
consider the first 1022 samples of Fig. 6 below the peak.  In the MATLAB workspace we take 
“std(crosscorr1(1:1023)”, which returns 33.4.  Then we square this to get a variance of 1.11x103.  
The SNR after the correlator is thus SNR=1.09x106/1.11x103 = 982 – almost 1000 times higher 
than the input SNR of 1.0.  According to rigorous digital-signal processing theory for an M-
sequence embedded in Gaussian noise, it should simply be SNRout/SNRin = 2N – 1 = 1023.   If we 
repeated the MATLAB experiment many times, this would be the average value. 

 
Offset + 1023 

 
Fig. 5. 
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In the language of modern RF systems, this enhancement in SNR between the input and the output 
of a correlator is called the “processing gain.”  It presupposes that the correlator is behaving as a 
matched filter for the signal component of the input waveform, which is generally true of all signals 
consistent with North’s theorem. 

 
Offset + 1023 

 
Fig. 6. 


