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Solutions HW#7 
 

1. Comparison of radar and radiometry. 
(a) For the double-sideband receiver at 650 GHz, the antenna gain G = 50 dB = 105 ≈ 

16/β2 , or β = 0.0127 rad = 0.7 deg.   The angle subtended by 1-ft-wide body at 30 ft is α 
≈ 2·atan(0.5/30) = 0.033 rad = 1.9 deg.  So assuming the receiver beam is pointed 
correctly, its beam is “filled” by the body so the apparent brightness temperature is equal 
to the body temperature (37 C) times the effective emissivity or TB = eTS = 0.8x310 K = 
248 K..  This is to be contrasted to the double-sideband receiver noise temperature, which 
is often close to one half the single-sideband value (assuming that the IF bandwidth is 
much less than the LO frequency, 1% in the present case).  So assuming a single spatial 
mode is received and the RJ limit, we estimate a pre-detection SNRPD = TB /(TB + TR)  = 
248/(2500+248) = 0.090.  Square law detection and integration improves this 

)()2/( 22
iPDPDAD tSNRfSNRSNR ⋅ν∆≈∆ν∆=  where ∆ν is the IF bandwidth bandwidth and ti 

is the integration time.  Substitution of ∆ν = 0.01*650 GHz = 6.5 GHz and setting SNRAD 
= 10 yields ti ≈ 2.3x10-6 s.   From the definition given in class, the NE∆T = 
NEPAD/(kB∆ν) (assuming a single spatial mode received), and NEPAD ≈kBTR∆ν /(∆ν ti)1/2 
=  1.8x10-12 W, so NE∆T = 20 K.  If the integration time is raised to 1 s, then the SNRAD 
goes up by 1/(2.3x10-6) from 10 to a value of  4.3x106 .  And the NE∆T falls by a factor 
of (2.3x10-6)½ to 31 mK. 

(b) For the 650-GHz “direct” receiver and 20% THz bandwidth, we again assume the 
body “fills” the antenna beam.   The absolute optical NEPAD is just the specific NEPAD 
times the square root of post detection bandwidth ∆f = 1/(2ti).  So for a 1 s integration 
time, NEPAD = (NEPAD)’ *(1/2ti)1/2 = 7.07x10-13 W.   For the unimodal antenna, the 
SNRAD = kBTB∆ν / (NEPAD) =  629  for  TB = 248 K and ∆ν = 130 GHz (20% BW).  The 
NE∆T under this condition (assuming R-J limit) is NEPAD/(kB ∆ν) = 0.39 K.  To achieve 
SNRAD = 10, the required integration time would only be 1 s *(10/629)2 = 0.25 ms. 

(c) For the monostatic radar at 650 GHz, we apply the modified radar range equation (for 
a specular target) to get a pre-detection SNRPD (= SNRBD) = Prec/[kB(TS+TR)∆ν] = (PtG2 
Γ2λ2εp)/[(4π)2(2R)2]/ [kB(TB+TR)∆ν], where Γ2 is the power reflection (0.5), R is the 
range (30 ft or 9.14 m), TR is the single-sideband receiver noise temperature (5000 K), 
and εp is the polarization matching factor which we will assume to be unity.   Under the 
stated system conditions, Prec = 20x10-6 W for, Pt = 1 mW and all other parameters as 
stated.  And for ∆ν = 6.5 GHz, the SNRPD = 4.2x104.   The noise-equivalent transmit 
power is just NEPT = [(4π)2(2R)2]*[kB(TS+TR)∆ν] /[G2 Γ2λ2 εp] = 0.47 µW !    From (a) 
above, the SNRPD = 0.09 and SNRAD = 4.3x106 for a 1-s integration time in the double-
sideband radiometer.  To achieve these with the radar using a square-law detector and 1 s 
integration time, we again apply )()2/( 22

iPDPDAD tSNRfSNRSNR ⋅ν∆≈∆ν∆= .  Setting ∆ν = 
6.5 GHz again, we get SNRPD = 0.026.  The required transmit power in this case is just 
(0.026/4.2x104)* 1 mW = 0.6 nW.    Although these solutions are overly optimistic, they 
make the point that active systems are often superior to passive ones when the target is 
reasonably close. And things get even better when the target is quasi-specular, provided 
that the reflected power is aligned with the receiver main beam.  This is the well-known 
“pointing” challenge of all THz systems (and RF systems too) with high-gain antennas. 

(d) Not required. 
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2. Matched filter problem 
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c) t=T; there are other times in this particular case that the outputs are equal 
but for the illustrative purposes of this problem, t=T  is of interest.  
Moreover t=T is the time which the observation interval time ends. 
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e) see plot below 

 
 
3. Since MATLAB offers the inverse error function, the two desired expressions for Pd 
vs Pfa and SNR for coherent detection are as follows: 
(a) ( )11 1 2

2d faP erfc erf P SNR−⎡ ⎤= − −⎣ ⎦
    if     ( ) 21 1 2 faSNR erf P−⎡ ⎤< −⎣ ⎦  

      ( )11{1 1 2 }
2d faP erf SNR erf P−⎡ ⎤= + − −⎣ ⎦

    if    ( ) 21 1 2 faSNR erf P−⎡ ⎤> −⎣ ⎦  

(b) and(c)  The MATLAB code used is as shown  here (there are certainly more efficient 
ways to do the computation, but the code below is very straightforward).  The plots 
are shown below.  The results for the coherent receiver are shown in red and 
contrasted against the known results for an incoherent receiver (shown in blue). 
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%MATLAB code to compute Pd vs Pfa parameterized by SNR for coherent 
%and incoherent receiver cases.  Written by  Prof. E. R. Brown 
numberSNR=input('what is the number of the signal to noise ratios?'); 
startingPfa=input('what is the starting PFA?'); 
numberPfa=input(' what is the number of PFAs , assuming order of magnitude 
increments?'); 
for i = 1:numberSNR 
    SNR=input('what is the SNR?'); 
for j = 1:numberPfa 
    Pfa(j) = startingPfa*10.^(j-1); 
    if SNR < (erfinv(1 - 2.*Pfa)).^2 
        PdC(j)=.5.*erfc(erfinv(1 - 2.*Pfa(j)) - sqrt(SNR)); 
    else 
        PdC(j) =.5.*(1 +erf( (sqrt(SNR) - erfinv(1 - 2.*Pfa(j))))); 
    end 
end 
loglog(Pfa,PdI) 
hold on 
loglog(Pfa,PdC,'color','red') 
hold on 
grid on 
end 
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