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Statistical Detection Theory 

We have frequently used the signal-to-noise ratio and its derivatives (e.g., NEP)  

to characterize the performance of RF and THz systems.  Although a very important 

figure-of-merit in any system, it does not tell us what the system operator ultimately 

needs to know, which is “what is the likelihood that the system will successfully detect a 

given target in a given setting, and what is the likelihood that it will miss the given target, 

or perhaps show the telltale signs of detection when the target is not there at all  ?”  These 

questions support the notion that detection in the presence of noise and other (false) 

targets is always a statistical process.  So to properly predict system performance, first a 

statistical analysis must be made of all the possible detection outcomes, and the various 

conditions of the system that could have created those outcomes.1,2,3  It is inherently a 

reverse statistical process.  That is, we know the outcome, but do not know with certainty 

the conditions that created it.  As such, it is guided by a specific sub-field of probability 

theory that started with Bayes.  It requires an accurate model for the system, including the 

signal-to-noise ratio as the key metric, and a thorough parameterization of the known 

target and other possible targets or environmental conditions that can create a detect for 

the outcome.  This leads to modeling detection as a binary decision in the presence of a 

“target” return signal buried in additive white Gaussian noise (AWGN) and occasionally 

accompanied by signal from false targets or “clutter” in the local environment.   

Receivers are usually linear up to the detection device, and so linear super-

position is assumed to hold.  The output signal from the receiver can then be written: 

 ( ) ( ) ( )sig noiseX t X t X t= +  (1) 

where Xsig is the expected signal (deterministic) and Xnoise is due to electronic and 

thermal noise (random process) as we have discussed in detail earlier.  The noise is 

assumed to simply add to the signal as opposed to multiply against it, non-linearly scale 

it, etc.  Further the above formula exemplifies that now the output is a random process.  

                                                 
1 R. N. Mcdonough, A. D. Whalen, Detection of Signals in Noise, Academic Press, New York, 1995 
2 J. V. DiFranco and W.L. Rubin, Radar Detection, SciTech Publishing, Raleigh, NC, 2004 
3 W.B. Davenport and W.L. Root, An Introduction to the Theory of Random Signals and Noise, 
Wiley-IEEE Press, 1987. 
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And so the SNR as defined is not the final metric, although as will be shown a good 

indicator and a pivotal measurement to assess the performance of a receiver. 

 

Receiver Analysis: the Bayesian criteria 

Since the output signal is a random process, we must apply statistical detection 

theory, which is relatively simple for RF sensors if they are fully binary.  That is, there 

are assumed to be two possible input conditions: (a) target absent (“0” condition), or (b) 

target present (“1” condition).  And there are two possible outputs, now represented by 

possible ranges of the electrical variable X.  If a target is absent, we have the range X0, 

and if the target is present we have the range X1.  This mapping between target presence 

and output range is shown graphically in Fig. 1.  And it makes sense for active RF 

sensors of all types, active (e.g., radar) and passive (e.g., radiometers). 

The primary function of the receiver is to determine which of the two input 

conditions exists based only on measurement of the output signal Xout over its entire 

range.   The complication of the receiver function, and the need for a statistical detection 

theory, is that the ranges represented by X0 and X1 generally overlap, creating an 

ambiguity in the mapping.   In other words, there are four possible outcomes of the fully 

binary target situation, as displayed graphically in Fig. 2: (a) target present and X in 

unambiguous region of X1, which is called a true positive; (b) target absent and X in 

unambiguous region of X0, which is called a true negative;  (c) target absent, X in 

ambiguous region of X0, and mistakenly interpreted as X1, which is called a false positive 

(or in radar colloquial, a “false alarm”), and (d) target present, X in ambiguous region of 

X1, and mistakenly interpreted as X0, which is called a false negative (or in radar 

 
Fig. 1. 
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colloquial, a “miss”).   The goal of the statistical detection theory must be to optimize the 

accuracy of the receiver by designing it to maximize the occurrence of the first two 

“correct” outcomes, and minimize the occurrence of the second two “incorrect” ones. 

 To proceed further, we assume that probability density functions are known to 

describe the X0 and X1 regions of Xout space, p0(X) and p1(X), respectively.   In general, 

these regions are not bounded as conveniently shown in Fig. 1, but are smeared out to 

create a continuous overlap over all the Xout space.   This forces us to seek further 

information to optimize the receiver accuracy, and led the mathematician Bayes to realize 

that information must be provided about the input condition and the output result.  

Ideally, one should know the a priori (i.e., beforehand) probabilities π0 and π1 for the 

target being absent or present.  And one should also know the cost, or loss factor, of each 

decision made.  Specifically, L11 is the loss function for a true positive, L00 is the loss 

function for a true negative, L10 is the loss function for a false negative, and L01 is the loss 

function for a false positive.4  Bayes then showed that an optimum receiver function 

could be made in terms of the “liklihood ratio” L of the a posteriori (afterwards) densities 

p0 and p1, 

                                                 
4 In statistical terminology, L01 corresponds to type-I error and L10  a type-II error 

 
Fig. 2. 
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This led to the optimization relations, called the Bayes criteria 

(a)  If 1 10 11

0 01 00

( )( )
( )
L LL X
L L

π
π

−
>

−
, then condition 0 exists  (3) 

(b) If 1 10 11

0 01 00

( )( )
( )
L LL X
L L

π
π

−
<

−
, then condition 1 exists  (4) 

It is very important for the reader to realize that these criteria are really a recipe.  In other 

words, if the receiver produces an output X at a given decision time, the Bayes criteria 

tell us how to make the most accurate decision about the input condition that created this 

X.   This can not be a decision that just reduces the likelihood of the two “incorrect” 

decisions but, rather, one that also enhances the likelihood of the two “correct” decisions.  

This is a good intuitive way of understanding why the key quantity in the Bayesian 

technique, and most branches of optimizing probability theory for that matter, is a 

likelihood ratio. 

 

A special case: the Neyman Pearson criterion 

In communications systems, one usually has a good understanding of the a priori 

probabilities and the loss factors by virtue of knowing how the transmitter sends 

information (e.g., the modulation format) and what the information is used for.  But in RF 

sensing, there are often no a priori statistics available on the occurrences of condition 0 

vs. condition 1.  But one can still define the a posteriori probabilities p0 and p1 and link 

them to the hypotheses H0 and H1 that the target is absent or present, respectively.  An 

interesting question is then whether or not any optimization of the receiver accuracy can 

be realized.   

In seminal work by Neyman and Pearson,5 it was found that optimization could 

still be achieved if the decision space of X (see Fig. 1) was also divided up, the simplest 

                                                 
5 J. Neyman and E. S. Pearson, Phil. Trans. Royal Soc. London, A231, pp. 289-337 (1933). 
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division being a single one with respect to a boundary or “threshold” value Xt.6   The 

presence of a threshold greatly simplifies the receiver decision-making process.  First, it 

makes the process binary in the sense that any output from the receiver exceeding Xt then 

supports the H1 hypothesis about the target, and any output less than Xt supports the H0 

hypothesis.   Second, it enables the definition of unique probability distribution functions 

with respect to p0(x), p1(x) and the threshold.  In one-to-one correspondence with the 

previously discussed four possible outcomes to the binary target situation, we have a 

probability of true positive (“detection”) Pd given by 

max

1( )
t

X

d
X

P p X dX≡ ∫  ,    (5) 

a probability of true negative Pn given by 

min

0 ( )
tX

n
X

P p X dX≡ ∫  ,    (6) 

a probability of false positive (“false alarm”) Pfa given by 
max

0 ( )
t

X

fa
X

P p X dX≡ ∫  ,    (7) 

and a probability of false negative (“miss”) Pmiss given by 

min

1( )
tX

miss
X

P p X dX≡ ∫  .    (8) 

Often Xmin is set to -∞ and Xmax is set to +∞, but one has to examine carefully the 

electrical variable and the circuit conditions.  For example, all electronic devices are 

saturable or critical at some Xmax value, so that close proximity of Xt to Xmax can 

significantly impact the probabilities define above.  And being legitimate pdfs, p0 and p1 

are each normalized over the domain Xmin < X < Xmax so that we have the important 

constraints 

   Pd + Pmiss = 1  and   Pn + Pfa = 1  (9) 

                                                 
6 This is also a very practical division since threshold circuits are very easy to construct from 
electronic devices with gain – transistors today, and vacuum tubes in the days of Neyman and 
Pearson 
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Given the threshold and its useful implications, the Neyman-Pearson optimization 

occurs with respect to one or the other of the two types of “incorrect” decisions, now 

represented by Pmiss and Pfa.  If one constrains Pfa to be less than or equal to a certain 

value, Pfa,max , then there exists a unique threshold Xt,0 that establishes the maximum 

possible Pd, Pd,max for that Pfa constraint.   Mathematically, we have 
max

,0

,max 0 ( )
t

X

fa
X

P p X dX≡ ∫    and  
max

,0

,max 1( )
t

X

d
X

P p X dX≡ ∫    (10) 

Some might consider this just common sense on the grounds that the threshold should 

always be set “as low as possible” to maximize Pd while keeping below the maximum 

tolerable Pfa.  But there is a deeper meaning.   Because Pmiss = 1 – Pd , the maximization 

of Pd also implies an automatic minimization of Pmiss subject to the same constraint on 

Pfa.  Hence, we have a minimization of “incorrect” decisions.  And we are back to the 

Bayesian thinking once again.  Namely, it is the liklihood of all incorrect decisions that is 

affected by any optimization procedure. 

To further elucidate the Neyman-Pearson optimization, we can examine the Bayes 

criteria under special conditions.  Assuming the lack of any knowledge of the a priori 

probabilities, we set them equal and get perfect cancellation in Eqn (2) above.  We can 

also assume that the “cost” or loss caused by false decisions is much greater than the 

“cost” or loss caused by true ones.  This allows us to assume L10 > L11 , and L01 > L00  in 

Eqn (2), yielding 

0 10

1 01

( )( )
( )

p X LL X
p X L

η≡ = =     (11) 

where η is a real positive number.  The counterparts to the Bayes criteria then become 

(a)  If ( )L X η> , then condition 0 exists     (12) 

(b) If ( )L X η< , then condition 1 exists     (13) 

These are usually stated in the reciprocal (Neyman-Pearson) form 

(a)  If p1 < p0/η ≡ p0 λ, then condition 0 exists        (14) 

(b) If p1 > p0/η  ≡ p0λ, then condition 1 exists        (15) 

where λ is also a positive integer.  
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 Eqns (14) and (15) can be related uniquely to a threshold Xt when the likelihood 

ratio p1/p0 is a monotonically increasing function of X.7.  We can then write the implicit 

definition  

1

0
tX X

p
p

λ
=

=      (16) 

This places the Neyman-Pearson conditions on similar ground as the more general 

Bayesian criteria, namely, on the basis of a likelihood ratio.  But it rarely used in practice 

simply because of the more practical value of the probability distribution approach 

outlined above. 

 

Other Criterion for Optimized Reception 

For the receiver optimization, there are two techniques in addition to the Bayes 

and Neyman-Pearson discussed above: the maximum a posteriori probability (MAP) 

criterion, and the minimax criterion.  Each criterion is used in different instances 

depending on the type and amount of information available at the time of detection.  As 

we have seen, the Bayes criterion uses the loss or cost functions and works to minimize 

the average cost for each particular decision.  The loss function establishes a priori the 

relative cost of for the various outcomes in a decision process.  For calculating the cost 

function the probabilities for each hypothesis are also needed a priori.    

The MAP (maximum a posteriori probability) criterion chooses the outcome that 

has the higher probability of having been in effect, given the particular output 

measurement.  The MAP criterion is the same as the Bayes criterion when the cost 

function for each decision outcome are equal to each other.  The minimax criterion uses 

the cost functions but has no information about the probabilities for the hypotheses a 

priori.  In other words, the minimax criterion is the Bayes criterion when each hypothesis 

is equally probable.  And the Neyman-Pearson criterion uses neither the cost function or 

prior probabilities.  By not making use of any information on each input hypothesis a 

                                                 
7 usually true in RF sensors and communications systems, but not necessarily true in statistical 
problems in general 
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priori, the Neyman-Pearson criterion is the most flexible and therefore the most widely 

used with radar systems. 

 

Implementing the Neyman-Pearson Criterion 

As discussed earlier, the Neyman-Pearson conditions are tantamount to 

maximizing Pd (or minimizing Pmiss) while maintaining Pfa to the “tolerable” level 

specified by the threshold Xt.  It is very helpful to demonstrate this through example. 

 

Example: Coherent detection of signal in Gaussian noise. 

In a radar detection problem, let us assume that the two possible target conditions H0 and 

H1 yield the two deterministic output states of electrical variable X shown in Fig. 3.    

 

Fig. 3 

 

After some time averaging, Xsig will thus always produce zero, or some repeatable 

“mean” value, Xm .  But because we do not know a priori the probability for the presence 

of the target, then Xm is itself a (binary) discrete random variable, Xsig = Xm or 0.  The 

added noise results in a the total output electrical random variable X(t)  = Xsig + Xnoise,.  

But because Xsig is binary, we can write:  

 
( )
( )

0

1

: ( )

:
noise

m noise

H X t X t

H X t X X

=

= +
 (17) 

If the noise is AWGN with variance of σ2, we can describe these random variable states  

by two Gaussian distributed random variables, one with a zero mean, and the other with a 

mean of Xm
 :  
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1 22

1 exp
22

m

n

X X
p

σπσ

⎡ ⎤−
= −⎢ ⎥
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These density functions are plotted in Fig. 4 with the overlap responsible for “incorrect” 

decisions that will inevitably be made.  According to the Neyman-Pearson conditions and 

the arbitrary threshold shown in Fig. 4, the two primary distribution functions are: 

 

Fig. 4 
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From Eqns (18) and (19), the Neyman-Pearson liklihood ratio test is given as: 

 ( ) ( )
( )

( )2 2
1

02
0

exp
2

m

n

p X X X X
X

p X
λ λ

σ

⎡ ⎤− −
= = − >⎢ ⎥

⎢ ⎥⎣ ⎦
 (21) 

By taking the logarithm and re-arranging, we can get a simple threshold test for the 

measured values X > Xt..  For example, by setting λ = 1, we define a condition of “equal 

errors” (i.e., Pfa = Pmiss).  Eqn (21) becomes (X – Xm)2 = X2 which has the obvious 

solution X = Xm/2.  This is manifest from Fig. 4.  If the Xt is set at this point, then Pd will 

be maximized with respect to the given Pfa.  But Pd = 1 - Pmiss , so this threshold also 
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defines the special condition where Pd = 1 - Pfa .  In other words, Pd also reaches the 

maximum allowed by probability theory. 

For other values of λ it is usually easier to determine the threshold through the 

distribution functions.  We do this by simplifying Eqns (20) through the conventional 

definitions of the error function and complementary error function 

2

0

2

2( ) exp( )

2( ) 1 ( ) exp( )

z

z

erf z y dy

erfc z erf z y dy

π

π

∞

≡ −

≡ − = −

∫

∫
   (22) 

such that each spans over the range 0 to 1 for 0 < z < ∞, and satisfy erf(z) = 1 – erfc(z).  

Both are plotted in Fig. 5 where their strong nonlinearity is apparent.  The erf(y) function 

saturates very abruptly just above y = 1.0, and the erfc(y) function falls precipitously 

from ~1.0 to 0 in the same region. 

By substituting y = X/(2σ2)1/2 and z = (X-Xm)/(2σ2 )1/2 , we get 

 

2

2 2

2
( ) /( 2 )

2

2

1 exp 2
2

1 ( ) /( 2
2
1 1 ( ) /( 2
2

t m

d

X X

t m t m

m t t m

P z dz

erfc X X if X X

erf X X if X X

σ

σ
πσ

σ

σ

∞

−

⎡ ⎤= − ⋅⎣ ⎦

⎡ ⎤= − >⎣ ⎦

⎡ ⎤= + − <⎣ ⎦

∫

 (23) 
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2
( ) /( 2 )

1 1exp 2 /( 2
22

t

fa t

X

P y dz erfc X
σ

σ σ
πσ

∞
⎡ ⎤⎡ ⎤= − ⋅ =⎣ ⎦ ⎣ ⎦∫   (24) 

Note that because we are only considering Xt > 0, the maximum of Pfa is ½ as one would 

expect from Fig. 4, but the maximum of Pd can approach 1.0 if Xm >> Xt.  

By application of the conditions Pd + Pmiss = 1 and Pn + Pfa = 1, we get trivially, 

2

2

11 1 {( ) /( 2 }
2

1 {( ) /( 2 }
2

miss d t m t m

m t t m

P P erf X X if X X

erfc X X if X X

σ

σ

⎡ ⎤= − = + − >⎣ ⎦

⎡ ⎤= − <⎣ ⎦

  (25) 
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2 21 11 1 /( 2 1 ( /( 2 )
2 2n fa t tP P erfc X erf Xσ σ⎡ ⎤ ⎡ ⎤= − = − = +⎣ ⎦ ⎣ ⎦   (26) 

From the unique expression for Pfa, we can find Xt by inversion 

2 12 (2 )t faX erfc Pσ −= ⋅     (27) 

Just 20 years ago, the inverse erfc function was difficult to determine, except by look-up 

tables.  Today it is just a simple library function in Excel, Matlab, or many other PC-

based tools ! 

 By dividing both sides by Xm and squaring, we get an interesting relation 
2 2 2 1 2 1 1 2( / ) (2 / ) [ (2 )] ( ) [ (2 )]t m m fa faX X X erfc P SNR erfc Pσ − − −= ⋅ =   (28) 

≡ Pt/Pm 

where Pt is the threshold power and Pm is mean signal power.  This tells us a lot about 

how to set the threshold to maintain a “tolerable” Pfa.  And not surprisingly, the 

proportionality constant is the inverse SNR.  In other words, as the SNR goes up, the 

threshold can be set lower and lower to achieve a given Pfa.  

 

Receiver Operating Characteristics 

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02

y

er
f(y

), 
er

fc
(y

)
erf(y)

erfc(y)

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02

y

er
f(y

), 
er

fc
(y

)
erf(y)

erfc(y)

 
Fig. 5 
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 Because of the strong nonlinearity in the probability distributions Eqns (23)-(27) 

that characterize a receiver according to statistical detection theory, it is helpful to plot 

them parametrically.  For historical and technical reasons related to the operation of radar 

systems, the most common plot is Pd vs Pfa .  Because of the relationship SNR = Pm/σ2 for 

AWGN and Pm, only two parameters are needed to fully represent Eqns (23) – (27), 

which are conventionally chosen to be SNR and Pt.  Fig. 6 shows such a plot with SNR 

ranging from 0.1 to 20 (-10 dB to +13 dB), and Pt ranging over four orders of magnitude.  

There are many interesting aspects of this plot, so many in fact that it gained the title 

“receiver operating characteristics” or ROC for short.  One of most important aspects is 

the magnitude of SNR needed to achieve “tolerable” Pfa and “acceptable” Pd.  Because of 

the anxiety and/or grave consequences caused by false alarms, most radar systems 

generally require Pfa < 10-6 , many military radar systems requiring much better than that.  

On the other hand, the “misses” associated with a low Pd (Pmiss = 1 – Pd) can also have 

grave consequences (e.g., air-traffic control radar).  So most radar systems require Pd >> 

0.9.  Inspection of the ROC diagram in Fig. 6 shows quickly that to get into this 

“ballpark” of operation we must have SNR ≥ 20, no matter what the threshold.  This is in 

stark contrast to the SNR = 1 condition commonly used to determine range and NEP, as 

we did earlier in the course.   

Another important aspect of the ROC diagram is how quickly the Pfa drops with 

increasing SNR at a given Pd, or similarly how quickly Pd rises with increasing SNR at a 

given Pfa.  For example Fig. 6 shows that at Pd = 0.1, Pfa drops ~4 orders of magnitude 

from 10-2 to 10-6 as the SNR increases from just 0.5 to 6.  And at Pfa = 10-6, the Pd rises 

~90 fold from 0.01 to 0.9 as the SNR increases from about 3 to 20.  These are very 

practical and general results of statistical detection theory and a key reason why radar 

systems tend to transmit so much power and to put so much emphasis on the signal 

processing.  Every factor-of-two improvement in the SNR makes a big difference ! 

 

On computing the ROC plot 

The plotting of the ROC curves in Fig. 6 is not so obvious and deserves a quick 

discussion.  It is impossible to write an analytic dependence of Pd on Pfa from Eqns (23) 
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and (24) above.   Pd depends on the SNR, which equals (Xm)2/(2σ2) by definition.  But 

both depend on the threshold to noise ratio TNR ≡ (Xt)2(2σ2).  So as often occurs in 

numerical analysis, if we vary the TNR continuously over the expected range and vary 

the SNR parametrically, we can calculate Pd and Pfa simultaneously and then “collate” to 

create the ROC curves. 
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1
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Fig. 6. Universal ROC Curve for Coherent Detection 


