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Definition: an RF system designed to detect the presence of objects or 
materials through their electromagnetic reflection or emission.

Hierarchy

A passive sensor detects thermal radiation emitted by an object, or environmental
radiation reflected by the object.  The paradigm passive sensor is the radiometer.

An active sensor detects radiation reflected from an object that the sensor system
itself transmits.  The paradigm active sensor is the radar – an acronym for
radio detection and ranging.

Coherent receivers are often based on heterodyne down-conversion (more later).
Incoherent receivers are often based on square-law detection (more later).
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Review of Classical Electromagnetics
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Take curl of Faraday’s: 
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And we get the vector wave equation: 0/ 22
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Radiation always entails two degrees of freedom: E
r% H

r%and
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Poynting’s and Sensor Power Theorem

0 0( ) jk r jk xE r E e E e− ⋅ − ⋅= =
r rr r rr%Simplest solution: Plane Wave:

Substitution back into vector Helmholtz eqn yields:
2

2 2 2 2
0 0 0 0 20k E E k

c
ωµ ε ω µ ε ω− + ⋅ = ⇒ = =

r r% %

For propagation along x axis

This is called the dispersion relation: a very important
kinematic relationship for all wave phenomena

From plane wave propagation we know that
is a vector that always points in  the direction propagation.  
To understand what the magnitude means, operate on this
quantity with the vector divergence operator:

HE
rr

×

)()()( HEEHHE
rrrrrrrrr

×∇⋅−×∇⋅=×⋅∇

)/()/( dtDJEtBH
rrrrr

∂+⋅−∂−∂⋅=

2 2(1/ 2) | | / (1/ 2) | | /E J E dt H tε µ= − ⋅ − ∂ − ∂ ∂
r r

tUdtUJE ME ∂∂−∂−⋅−= //
rr

Application of Gauss’ divergence theory now yields

∫∫∫ ⋅≡⋅×=×⋅∇ sdSsdHEdVHE
V

rrrrrrrr
)()(

surface vector that encloses volume V

So HE
rr

× represents a flux of power and the the integral 

∫ ⋅× sdHE rrr
)( represents total power leaving enclosed volume

Joule heat Electric energy density Magnetic energy density
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Poynting’s theorem for plane waves:

In phasor form: 0ˆ ˆ( / )jkz jkz
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Average value is found by noting that long-time average of cos2 (or sin2) is 1/2
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Nice mathematical trick: Given phasor forms of E and H, 
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Sensor Power Theorem

An important quantity for sensors is the time-averaged power flowing into the sensor 

aperture, AHEASPinc

vvrvv
⋅×=⋅= }Re{)2/1( , where A

r
is the sensor areal vector (pointed 

perpendicular to the sensor surface).  An even more important quantity is the power usefully absorbed,

AHEPP incabs

vvr
⋅×⋅=⋅≡ }Re{

2
1ηη             

 

and η is the power coupling efficiency.  Since η is the fraction of incident power absorbed, it must 

account for the effects of reflection at the environment-sensor interface, unabsorbed radiation that 

passes through the sensor, etc.  The majority of sensors couple radiation in from free space 

propagating perpendicular to the surface.   In this case H
v

is perpendicular to E
v

, 0/|||| zEH
vv

=

,and  

Pinc = ½(E2 A)/z0 = ½(ε0 cE2 A) = cUEA ,   

so that 

Pabs = η c UE A 

This is very useful in sensor calculations since the energy density is a better quantity to deal
with than the Poynting vector when one considers both radiation signal and radiation noise.
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Like any other physical observable, neither E or H can be measured with arbitrary precision.
To understand the measurement of E and H at the finest scale, we need quantum mechanics.
The balance between the electric and magnetic field energy densities in Poynting’s theorem
resembles the balance between potential and kinetic in a harmonic oscillator (e.g., mass on 
spring).  Using methods of quantum field theory, the E and H amplitudes in the classical
wave equation can be quantized.  The resulting collective excitation of E and H can be 
represented by an equivalent quantized harmonic oscillator :
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UK = (n + ½) hνK = 

ωK = k·c in free space
Kn ωh)2/1( +

Energy , hν

Quantum Picture of Radiation

The term Kωh)2/1( is called the “zero-point” energy .  Effectively, it is energy stored
in the electromagnetic field that can not be extracted to do useful work (i.e., can 
not be used as the basis for remote sensing or communications)

Equivalent temperature, hν/kΒ

The two most important constants in sensor theory:
Planck’s:  h = 6.626x10-34 J-s
Boltzmann’s:  kB = 1.38x10-23 J/K
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How do we find photon number in a statistical sense? 
Assume atoms all exchange heat with a bath, at temperature T 
Still can apply Maxwell-Boltzman: 
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Quantum Statistics of Radiation
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Numerator; trick-notice: 
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This is the famous Planck distribution 

 
Mean energy and other thermodynamic quantities are average over k states     
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Note that when 

B
k

k Tn
ω

≈
h

Bk Tω <<h exp( / ) 1 /B Bk T k Tω ω≈ +h h and 

a very important condition called the “classical” limit in statistical mechanics,
and the Rayleigh-Jeans limit in radiation theory.  

It is almost always true in RF sensors
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Imagine doing a mean energy calculation inside a large cubic cavity of side L 

Convert to sum over ωk since <U> is explicit in ωk , 

1
2k k mU n gω⎛ ⎞= + ⋅⎜ ⎟
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∑ h where mg is the degeneracy factor = 2 for two possible 

polarizations.  Thus 
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space).  To get D(ω), we must do state counting noting that any closed cavity has a 

minimum frequency separation between modes ∆ν = c/L => ∆k= ∆ω/c = 2π/L 
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And from the power theorem, we get a total power passing through any unit area of  
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Thermal (Blackbody) Radiation

Cavity Derivation
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In thermodyamics and heat transfer, we are interested in this integral and its derivatives.  

In remote sensing, the spectrum is usually “band limited” so we are interested in the 

fraction of power δP power over a limited range δω: δP = (dP/dω) δω 

And because the limits of the integral are constants, we have 
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In this derivation the blackbody radiation is isotropic so radiation within any small solid 
angle δΩ is simply δP(δΩ/4π).  If we also divide out the area, we get a very special 
function in remote sensing called the brightness 
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The brightness is so useful because it describes the power per unit area emanating from a 
blackbody into a small solid angle and limited frequency band.  This is the quantity that 
remote sensors usually measure, although from objects that do not behave like 
blackbodies because of finite surface reflection.  To show this deviation, we define an 
emissivity, ε, which goes to 1 for a perfect blackbody and to zero for a perfect reflector. 
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For remote sensing in the RF region with terrestrial targets, one generally  has T > 200 K 
so that hν << kBT .  This leads to the Rayleigh-Jeans limit of thermal radiation, 
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This simple result was originally derived using the principle of equipartition: that there is 
a total of (1/2) kBT of energy per degree-of-freedom.  The thermal radiation is made up 
of electromagnetic waves, each having four degrees of freedom: two for the electric and 
magnetic fields, respectively, and two for the different polarizations. 
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Blackbody brightness spectra for different source temperatures
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Modal Derivation

• Real sensors are not located in radiation boxes !

• To get the power received and usefully absorbed  by real sensors, it is  
necessary to decompose the radiation into orthogonal spatial modes

• The most useful spatial modes are the “spatial” modes defined by the 
antenna of the sensor system

• From statistical mechanics, we know the Planck function is valid for 
any orthogonal set of modes, no matter what their origin.  So the 
mean thermal energy incident from free space at frequency ν is just 
the energy quantum, hν, times the mean number of photons in that 
mode, summed over all spatial modes

Where m is the spatial mode index and M is the maximum number 
of spatial modes (RF sensors sometimes accept more than one 
spatial mode, but almost never couple to so many that the 
summation can be approximated by an integral).

νν hfU P

M

m
⋅>=< ∑

=

)(
1

• In addition to the spatial modes, we need to address the issue of 
“longitudinal” modes.   In the Planck distribution each ν corresponds to a 
unique harmonic oscillator, and therefore a unique mode. The total energy 
in a frequency range ∆ν is to be thought of as a sum over all the possible 
“longitudinal” modes for each lateral mode

νν hfU
N

n
P

M

m
⋅>=< ∑∑

== 11
)(

where n is the longitudinal-mode index.  
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The number of longitudinal modes N(ν) and mean energy incident on the 
sensor at each increment of ν are then given by:
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For most RF sensors the “range” L is great enough that c/2L << ν0 , where 
ν0 is the bottom of signal passband. So we can approximate the sum by
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The energy density becomes:

And the incident and absorbed powers can be written:

No dependence on c or A !

We estimate the number of longitudinal modes by three practical assumptions:

(1) Thermal radiation is separated from the sensor antenna by a distance L and boundary 
conditions require that the electromagnetic intensity be a maximum at both ends.

(1) The lowest frequency longitudinal mode corresponds to a half-wavelength between the 
two ends, νmin = c/2L (note: in open-cavities and Fabry-Perot resonators, this quantity 
is called the free spectral range).

(3) The sensor is filtered so that it responds only to radiation lying within a “passband” ν0 to 
ν0 +∆v, and that the sensor responds only to the half of the longitudinal modes 
propagating in the direction from the source.   
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In the RF bands and in the terrestrial environment, one generally has T > hν/kB over

the entire band ∆ν, so that again,  ehν/k
B

T -1 ≈ hν/kBT . 

νννν
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ν

∆⋅⋅=⋅=⋅>=< ∫∫
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TkMdTkMdhfMP BBPabs

0

0

0

0

This is the Rayleigh-Jeans limit again, typical at all RF frequencies and below.  For

example, if ν = 1 THz (top end of RF regime) and T = 290 K (room temperature), we 

have hν =  4.1 meV, and  kBT =  25.0 meV, so that hν/kT =0.164 and ehν/k
B

T =1.178 (i.e., 

the Rayleigh-Jeans approximation is accurate to about 9%)
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Both expressions can be generalized to account for other forms of radiation:
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• The sinusoidal waveforms from the classical wave equations are both 
replaced by a wave function called the coherent state of frequency 
ν = ω/2π.   

• The amplitude, or occupancy, of this state corresponds to the 
instantaneous power associated with the classical field amplitudes E or 
H, and the occupancy number represents the number of photons in this 
state.   

• Each photon still has energy hν.    
• Because of quantum uncertainty, the photon number in the coherent 

state itself is random and obeys Poisson statistics.   
• Probability of measuring n photons in the mode in an arbitrary time 

interval is given by  

><−><
= n

n

e
!n

n)n(p  

where <n> is the mean number of photons measured in this same 
interval over many different measurements.  
(Note: like Gaussian distribution, Poisson distribution is a bonafide 
probability distribution function with the required properties 
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• Connection to classical behavior is realized by noting that for purely 
sinusoidal E and H field  

)(

!
)]([)( tn

n

e
n

tnnp ><−><
=  

where )(sin)( 2 ttn ω∝><  
• Given the photon picture, an equivalent way to represent a coherent 

wave and a sensor is through the average measured photon rate JP 
(≡average number of photons usefully absorbed by the sensor per 
unit time)    

ν
η

ν h
AUc

h
PJ Eabs

P
⋅⋅⋅

==  (a photon flux) 

(same as Einstein’s photoelectric expression) 
 

• Even for the relatively weak RF coherent sources, this flux is 
astronomically high. For example, a source putting out 1 µW at 600 
GHz (hν = 2.48 meV) is emitting a photon rate of 2.5x1015  
photon/s ! 

 

Quantum Picture of Coherent Radiation
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