A Quick Look at THz Attenuation Mechanisms and Propagation

Two types of attenuation, both more common than in lower RF bands:

(1) Absorption

- Conversion of electromagnetic radiation into heat
- (a) Conduction current (Joule) heating: $P_{diss} = \overline{J \cdot E}$ (e.g., losses in undepleted semiconductors) (overbar denotes time average)
- (b) Polarization current heating $P_{diss} = \overline{(dP/dt)} \cdot E$ (e.g., polar liquids, such as water in a microwave oven)

(2) Scattering

- (a) Non-resonant internal scattering from inhomogeneous dielectrics (e.g., composite materials such as RT-Duroid)
- (b) Resonant scattering from particles of dimension $\sim\lambda$ (e.g., raindrops)
- (c) Mixture of specular scattering from smooth surfaces and diffuse scattering from rough surfaces (in infrared, more surfaces tend to be diffuse; in RF bands more surfaces tend to be specular)

Notes #3, ECE594I, Fall 2009, E.R. Brown

Radiative Transfer

Good Introductory Reference: J.D. Kraus, "Radio Astronomy" (McGraw-Hill, New York, 1966).

Describes attenuation effects for many THz point sensors (active and passive), and for remote active systems. Especially useful when intervening material is a linear, isotropic, and homogeneous (LIH) dielectric, or an array of independent scatterers:

 $T \equiv \frac{I_t}{I_i} = \exp(-\alpha_A \cdot z) \qquad T \rightarrow \text{transmission, } \alpha_A \rightarrow \text{attenuation coefficient}$ $I_i \rightarrow \text{incident intensity, } I_t \rightarrow \text{transmitted intensity}$

For absorption, $\alpha_A = \alpha_{ABS}$, the absorption coefficient (a characteristic of the material, and generally a function of frequency)

For scattering $\alpha_A = \rho \sigma_S$, ρ being the density and σ_S the scattering cross section

Simulation Tool:

- Windows®-based atmospheric propagation tool called PcLnWin (Ontar, Corp.)
- FASCODE radiative transfer engine developed by U.S. Air Force Geophysics Lab in 1970s.
- HITRAN96 database (> 1 million molecular lines) developed by molecular chemists and maintained by U.S. Air Force (Hanscom AFB)

Atmospheric Conditions

- Seven "standard" molecules: H₂0, CO₂, O₃, N₂O, CO, CH₄, O₂
- 1976 U.S. standard atmospheric model @ sea level
 - Temperature = 288 K, Pressure = 1 atm, Humidity = 46%

Between 300 GHz and 2.0 THz, water vapor dominates the attenuation by way of molecular dipole transitions

Stick Diagram of Atmospheric Molecular Lines

Why is Water Vapor Absorption So Strong and So Complicated ?

- For all polar molecules in the vapor state, THz transitions can occur between angular momentum eigenstates of the entire molecule if the energy difference between eigenstates = hv, and if the change in angular momentum along the axis of photon propagation = $h/2\pi$
- For symmetric rotors (e.g., carbom monoxide CO, hydrogen chloride HCI, etc.), two of the moments (along two orthogonal axes) are identical and the third is trivially small, so that

 $\begin{array}{c} \longleftarrow \mathbf{R} \longrightarrow \\ (+) & \hline \\ \end{array} \quad \mathbf{I} = \mu \mathbf{R}^2 \qquad \text{Ignoring spin, } \mathbf{U}_{\mathbf{X}} = \frac{\mathbf{L}^2}{2\mathbf{I}_{\mathbf{X}}} \qquad L^2 = \hbar^2 l(l+1) \end{array}$

- $I_x \to$ moment of inertia for rotation about a given axis, x $L \to$ orbital angular momentum eigenvalue
- Photon absorption or emission can occur of $\Delta l = 1$, for which $\Delta U = \frac{\hbar^2}{2I_x} [(l+1)(l+2) - l(l+1)] = \frac{\hbar^2}{I} (l+1) = \hbar \omega$

This creates a "ladder" of photon frequencies as shown to the right

- Although highly polar, water is asymmetric rotor meaning that no two moments of inertia are equal. This follows from its non-colinear alignment between the three atoms
- Any of these purely rotational transitions will be easily observed if $\omega \tau >> 1$ where τ is the momentum relaxation time (or dephasing time)

• Generally, τ > 100 ps or more under STP conditions, so THz transitions are obvious

Atmospheric Simulation, Propagation "Windows"

Notes #3, ECE594I, Fall 2009, E.R. Brown

Equivalent Attenuation Length

* Since Lambert-Beer law of transmission, T = exp(-αz) applies the 1/e attenuation length is a "natural" metric

Notes #3, ECE594I, Fall 2009, E.R. Brown Ten Strongest Water Vapor Lines in THz Region

(the big "whoppers")

Freq [THz]	Peak Attenuation [dB/m]
0.558	18.4
0.758	12.7
0.989	9.4
1.098	61.6
1.164	71.6
1.412	52.9
1.671	163.6
1.718	150.0
1.869	59.9
1.920	46.3

Absorption Models for Liquids and Solids

(1) Drude model of conductors :

$$\varepsilon = \varepsilon_{back} - j\frac{\sigma}{\omega} \qquad \sigma = \frac{\sigma_0}{1 - j\omega\tau} \quad \begin{cases} \tau \to \text{momentum relaxation time} \\ \sim 10 \text{ fs in common metals @300 K} \\ > 100 \text{ fs in semiconductors @300 K} \end{cases}$$

(2) Debye model of polar liquids (single component):

e.g., for pure water at 300 K, single Debye relaxation frequency $v_1 = 17.5$ GHz, and the dielectric constants ε_0 and ε_{∞} are 79.7 and 5.26, respectively

(3) Independent of absorption model, Maxwell's eqns predict:

$$\alpha = 2\omega \left\{ \frac{\mu\varepsilon'}{2} \left[\sqrt{1 + (\varepsilon''/\varepsilon')^2} - 1 \right] \right\}^{1/2} \text{ where } \varepsilon \equiv \varepsilon' + j\varepsilon''$$

63

Single-Debye Model for Liquid Water

 $(\varepsilon_0 = 78.2, \varepsilon_{\infty} = 4.9, \tau = 8.1 \text{ ps, all at } 25^{\circ}\text{C})$

Notes #3, ECE594I, Fall 2009, E.R. Brown Single-Debye Model for Liquid Water (cont)

 $(\varepsilon_0 = 78.2, \varepsilon_{\infty} = 4.9, \tau = 8.1 \text{ ps, all at } 25^{\circ}\text{C})$

Scattering from a Conducting Sphere

[L.V. Blake, "Radar Range Performance Analysis," (Artech House, Norwoood, MA, 1986), Fig. 3-1].

Resonant Scattering

The maximum is $\sigma \approx 3.65 \ \pi a^2$ at $a = 0.163 \ \lambda$. This is called resonant (Mie) scattering and is caused by constructive interference of surface currents flowing around the sphere. Same effect occurs in ellipsoids and arbitary-shaped solids... just not as strong as in spheres

Intuitive estimate of surface resonance assuming surface current velocity of c: $2\pi = \omega t = \omega(2\pi a/c) \implies a = \lambda/2\pi = 0.159 \lambda$

Example: at 1.0 THz ($\lambda = 333 \ \mu m$), resonant Mie scattering occurs for a particle diameter of 106 μm

• Many materials (e.g., powders such as sugar; composites such as RT-Duroid) have inhomogeneity on the 100 micron scale ⇒ strong THz scattering

Pure Liquid Water at THz Frequencies

Salt Water

Disagreement about Salt Water

"0.15-3.72 THz absorption of aqueous salts and saline solutions," J. Xu, K. W. Plaxco, S. J. Allen^{,,} J. E. Bjarnason, E. R. Brown, Appl. Phys. Lett, 90, 031908 (2007).

Other Liquids of Varying Polarity

Notes #3, ECE594I, Fall 2009, E.R. Brown

Common Cloathing Samples

Transmission through Common Clothing

74

THz Transmission through Organic and Biomaterials (cont)

C4 Explosive (~90% RDX)

Notes #3, ECE594I, Fall 2009, E.R. Brown THz Vibrational Resonance of Lactose Monohydrate

Low-lying Sub-THz resonances can be explained only by combination of intramolecular "twisting" (hindered rotation) plus intermolecular coupling

Molecular Absorption Examples (cont)

 Recall the change in energy of a rigid diatomic rotor from the state with orbital angular momentum quantum number I to state with I + 1, consistent with absorption of a photon of energy hv:

$$\Delta U = \frac{\hbar^2}{2I_X} [(l+1)(l+2) - l(l+1)] = \frac{\hbar^2}{I} (l+1) = \hbar \omega \quad \text{or} \quad v = \frac{\hbar}{2\pi I} (l+1) \equiv 2B(l+1)$$

where B is called the rotational constant and I is the moment of inertia. Recall from mechanics that the moment-of-inertia concept of any three-dimensional solid body of mass M allows us to divide the kinetic energy of the body into two terms: (1) linear KE of the center-of-mass, (1/2)Mv², and (2) angular kinetic energy of rotation about the center-of-mass point, (1/2) $I\omega^2 = L^2/(2I)$. It also allows us write

$$\vec{L} = \vec{I}\vec{\omega}$$

Where ω is a column vector denoting the circular frequency components for an arbitrary rotation about the x, y, and z axes respectively. This definition reminds us that I is actually a 3x3 matrix, called a tensor. When the rigid body can be approximated as a collection of N masses (very good approximation for any rigid molecule), and in a cartesian coordinate system

$$= I = \begin{pmatrix} \sum_{i=1}^{N} m_i(y_i^2 + z_i^2) & -\sum_{i=1}^{N} m_i(x_i y_i) & -\sum_{i=1}^{N} m_i(x_i z_i) \\ -\sum_{i=1}^{N} m_i(x_i y_i) & \sum_{i=1}^{N} m_i(x_i^2 + z_i^2) & -\sum_{i=1}^{N} m_i(y_i z_i) \\ -\sum_{i=1}^{N} m_i(x_i z_i) & -\sum_{i=1}^{N} m_i(y_i z_i) & \sum_{i=1}^{N} m_i(x_i^2 + y_i^2) \end{pmatrix}$$

Note: this is a real symmetric matrix so from linear algebra can always be diagonalized !

Molecular Absorption Examples (cont)

The diagonal form is defined generically as

$$\stackrel{=}{I} \equiv \begin{pmatrix} I_{X} & 0 & 0 \\ 0 & I_{Y} & 0 \\ 0 & 0 & I_{Z} \end{pmatrix}$$
 satisfying

$$\frac{x^2}{I_x} + \frac{y^2}{I_y} + \frac{z^2}{I_z} = 1$$

where I_X , I_Y , and I_Z are called the "principal" moments of inertia. The right equation is that of an ellipsoid of revolution centered at x=0, y=0, z=0, which is a convenient geometric construct to understand the principal moments. As in other tensorial quantities in physics, the relative values of I_X , I_Y , and I_Z , reflect the inherent spatial symmetry, so the corresponding objects are given special names

- (1) $I_X = I_Y = I_Z \implies \text{spherical "top"}$
- (2) $I_X = I_Y \neq I_Z \Rightarrow$ symmetric "top"
- (3) $I_x \neq I_y \neq I_z \Rightarrow \text{asymmetric "top"}$

(4)
$$I_X = I_Y$$
, $I_Z \approx 0 \implies$ "rotor"

(Recall definition of "top": a solid object that can spin freely in any of three dimensions)

Rules to determine the principal axes and moments:

(1) Any axes of symmetry will generally be a principal axis.

- axis of symmetry means that when rotated about this axis, the molecule reproduces itself every $2\pi/n$ degrees, where n > 2
- (2) If a molecule has an axis of symmetry with $3 \le n$, it will always be a symmetric "top"

Molecular Absorption Examples (cont)

Clearly "rotors" are the simplest since they are effectively one-dimensional

(2) Polyatomic (N) rotor

$$I_{X} = I_{Y} = \frac{1}{2} \cdot \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} m_{i} m_{j} R_{ij}^{2}}{\sum_{i=1}^{N} m_{i}}$$

(3) Example: Carbon Monoxide: $m_c = 12.0*1.67 \times 10^{-27}$ KG , $m_o = 16.0*1.67 \times 10^{-27}$ KG, R 1.128 Ang, so that

I = 1.457x10⁻⁴⁶ KG-m^{2,} and
$$~\hbar^2$$
 / $I=~$ 7.63x10⁻²³ J = 0.476 meV or v = 115 GHz

Rotational transition "ladder": $v_0 = 115 \text{ GHz } v_1 = 230 \text{ GHz } v_2 = 345 \text{ GHz}$, etc.

• For symmetric rotors (e.g., carbom monoxide CO, hydrogen chloride HCI, etc.), two of the moments (along two orthogonal axes) are identical and the third is trivially small, so that

$$\begin{array}{c} \longleftarrow \mathbf{R} \longrightarrow \\ (+) & \quad \mathbf{I} = \mu \mathbf{R}^2 \end{array} \quad \text{Ignoring spin, } \mathbf{U}_{\mathbf{X}} = \frac{\mathbf{L}^2}{2\mathbf{I}_{\mathbf{X}}} \quad L^2 = \hbar^2 l(l+1) \end{array}$$

 $I_x \rightarrow$ moment of inertia for rotation about a given axis, x $L \rightarrow$ orbital angular momentum eigenvalue

• Photon absorption or emission can occur of $\Delta l = 1$, for which

This creates a "ladder" of photon frequencies as shown to the right

- Although highly polar, water is asymmetric rotor meaning that no two moments of inertia are equal. This follows from its non-colinear alignment between the three atoms
- Any of these purely rotational transitions will be easily observed if $\omega \tau >> 1$ where τ is the momentum relaxation time (or dephasing time)
- Generally, τ > 100 ps or more under STP conditions, so THz transitions are obvious

