
• A critical aspect of any remote sensor is the coupling from the circuit (or transmission line) 
medium of the sensor to the external medium in which the target is embedded (usually 
free space), and/or the coupling of the external medium to the sensor

• The component that carries out this coupling is traditionally called the “antenna”.  
• RF sensor antennas generally fall into one of two categories: (1) wire antennas, and (2) 

aperture antennas.  
• At the low end of the RF spectrum, roughly up to 10 GHz, the wire antennas take on the 

form of dipoles, spirals, helices and other simple shapes.  The aperture antennas usually 
take on the form of parabolic or elliptical dishes.

• At the high end of the RF spectrum, the wire antenas usually occur on substrates in the 
form of patches, slots, or other “printed-circuit” antennas.  The aperture antennas usually 
have the form of feedhorns or small dishes.

Coupling of THz Radiation to Free Space: Antennas*

*Good reference on antennas:
R.S. Elliott, “Antenna Theory and Design,” (Prentice Hall, Englewood Cliffs, 1981).

• All antennas are also classified by their electromagnetic properties (i.e. radiation or beam
“pattern” in the external medium) and their circuit  properties (i.e., the impedance) in the
internal medium.  Because the antenna is a reciprocal passive element, the properties

in reception are related to those in transmission, but the transmit case is easier to do first

Electromagnetic Properties in Transmit

(1) The radiated electric field at a far distance from the antenna will tend to display
a modified spherical-wave of the form

r
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where k is the free-space propagation constant (= ω/c = 2π/λ) and F is the 
(normalized) intensity pattern function, F ≡ |S(r,θ,φ)|/Smax with S being the Poynting
vector and  Smax is its maximum magnitude, wherever in space that occurs.

• All antennas display a limited direction in space where F(θ,φ) is large and other 
regions where it is negligible, in contrast to isotropic (point) sources.  
Therefore, a useful metric is the directivity, D.
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where ΩB is the beam solid angle. Conceptually D defines how much greater 
the intensity is at the peak of F compared to the isotropic radiator emitting
the same total power, for which ΩB = 4π and D = 1.
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In this case it is useful to approximate F(θ,φ) by an equivalent spherical cone 
or sector having a symmetry axis along θP, φP , and polar angular width (or widths) 
equal to the full-widths at the half-maximum points β(φ) of the real major lobe.  
• Throughout the cone or sector, F(θ,φ) =1.0
• If the pattern has perfect conical symmetry (generally true for parabolic dishes 

and lenses, and often the design goal for feedhorns), then one finds
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and

In the limit of a narrow “pencil” beam where β is small (<< 1 rad), one can 
Taylor expand the denominator, yielding

2
16
β

≈D

Note that in most books make the simpler approximation ΩB ≈ β2, 
so that D ≈ 4π/β2 - a less precise expression but one easier to remember.

The characterization of the parabolic dish then reduces to knowing the
-3-dB full-width the main lobe, β

• An important aspect of all antennas is their degree of non-ideal behavior related
to  radiation in “sidelobes”.  These are peaks of radiation in addition to the 

main lobe that arise from the phenomenon of diffraction.

• Diffraction is most easily explained for aperture antennas because they are
wider than a wavelength, so that scalar diffraction theory applies:

Non-Ideal Behavior of the Radiation Pattern: Diffraction

• All RF antennas are generally designed to have a pattern function that displays 
a predominant, symmetric or quasi-symmetric peak (i.e, “major lobe”) in a single 
direction of space θP, φP
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For a uniformly illuminated circular aperture, one gets

where J1 is the ordinary Bessel function of 1st order, a is the radius, and θ is the angle of 
the measurement point relative to the optical axis

• A key issue in using this integral is the geometric shape of the aperture and
the amplitude distribution of the point  sources inside the aperture. 
In the special case of  uniform illumination, scalar diffraction predicts a 
far-field pattern for a rectangular aperture that goes as:

• Both of these functions oscillate with respect to polar angle, θ , reaching relative minima
and relative maxima in between.  Each portion of the radiation pattern between the relative
minima is called the “sidelobe”.    The totality of oscillating behavior of the radiation 
pattern is called “diffraction.”
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Where k=2π/λ, a is the half-width of the rectangle along x,
b is the  half-width along y, and r is the range to the 
measurement point

• Scalar diffraction theory provides an approximate solution to the vector EM
wave (Helmholtz) equation for radiation passing through the aperture.

• The scalar formalism results in the famous Kirchoff-Fresnel integral which, 
in essence, approximates the radiation pattern as the superposition of point 
sources filling the aperture, each point source radiating a spherical wave .
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• J1(x)/x peaks at x = 0. But its peak value is 0.25, not 1.0 as for the sinc(x).   
• The first null occurs at the first zero of the J1 function, x = 3.835 or θ = 3.835 λ/(2πa) =

0.610 λ/a.  
• A secondary peak of magnitude 0.00437 occurs at approximately x = 5.14, corresponding

to  θ =  0.818 λ/a.  Note that this secondary peak (first sidelobe) has a value of 0.0175 or 
–17.6 dB relative to the main lobe (this is to be contrasted to the more familiar value of
–13.2 dB for the first sidelobe for a square aperture of uniform illumination

Example: the uniformly illuminated circular aperture

• From this case,  the –3-dB point is at x = 1.616, so the beam full-width is given by 
β = 2θ = 3.232 λ/(2πa).  
Substitution into directivity expressions yields (for β << 1) 
D ≈ 16/β2 = [16(2πa)2]/(3.232⋅λ)2 = 1.53 ⋅[4πA/λ2] where A = πa2 is the circular area . 
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•The last quantity arises frequently in the analysis of aperture and wire-like antennas and so
has a special place in the electromagnetic field as the maximum or “diffraction-limited” directivity

Dmax = 4π A/λ2

• This is imprecise but often used as a rule of thumb and for system calculations

• Note: all of the above analysis rests on measuring the radiation pattern in the
“far-field”, defined approximately by r > 2d2/λ.  But this criteriion applies only to
some antenna types, and is often replaced by r > 10d2/λ to be safe

Antenna Circuit Properties

• Every antenna can be characterized by its “driving-point” impedance ZA = RA + jXA
where RA is the driving point resistance and XA is the driving point reactance.

• Since antennas are usually driven through transmission lines, their impedance is
related to the measured reflection coefficient, Γ ≡ S11 = (ZA – Z0)/ZA + Z0).

• The electrical characterization is based on the behavior of ZA.
(1) For RA >> XA over a wide frequency range, the antenna is called “wideband”

assuming that  RA usefully large
(2) For XA = 0 at some frequency and RA usefully large at this frequency, the

antenna is called “resonant”.

• Both types of antennas are common, depending on the sensor design and application.
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(1) The canonical resonant wire-like antenna.  The printed dipole:
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(2) A useful “wideband” wire-like antenna.  The self-complementary rectangular spiral
(recently developed by Prof. Brown’s research group).
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Antenna Gain

• Because it is difficult to get a perfect beam pattern and a perfect impedance match at
the same time, a new metric is used that includes both effects.  It is called the antenna

gain GA, and is defined simply by

DDGA ⋅−Γ−== )1)(||1(|| 22 ετ

Where |τ|2 is the power transmission coefficient from the drive circuit to the environment
and D is the directivity.  Note that |Γ|2 = |S11|2 is the power reflection coefficient and ε
is the power absorption fraction. 

Hence, G defines the maximum  intensity produced at a particular point in space 
from an antenna driven by a generator having available power PA, and taken relative 
to the intensity from a point source P/(4πr2).
Notes: (1) for a perfectly matched antenna having no absorptive losses, |Γ| = 0 and

ε = 0, so that G = D.  At low frequencies, roughly below 10 GHz, many antennas
will provide negligible absorptive losses, so that ε ≈ 0 and GA ≈ (1 - |Γ|2)D.  This

approximation is very common in antenna textbooks.
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At the maximum of the antenna pattern, the intensity (or magnitude of
Poynting vector) on a target at a distance r from the antenna will be

Imax = GAPA/(4πr2 )

Power Flow
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Antennas in Reception

• It was proven early by Lorentz that antennas obey electromagnetic reciprocity.
In words, if a given drive current I in a transmit antenna produces a voltage V in a
receive antenna, than the same I applied to the receive antenna will produce V in the
transmit antenna.   It leads to the fact that the antenna pattern in transmission is the 
same as the pattern in reception.  And this leads to the representation of all antennas 
in reception by an “effective aperture”
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Where Pint is the “intercepted” power, Sinc is the incident Poynting vector magnitude
at the antenna, Pavail is the available power, VOC is the open circuit voltage and η0
Is the intrinsic impedance of free space

The derivation is easiest for wire-like antennas for which VOC ≈Einc·Leff where Leff is the
effective length of the antenna (close to the physical length for dipoles).  

From elementary antenna theory, we know that for a short (Hertzian)
dipole,  RA = 80(πL/λ)2 and D = 1.5.  Hence

Aeff = λ2D/(4π)
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D = 4πAeff/ λ2or

So we get

Note: This is a further reason why this expression is so ubiquotous:
While being the diffraction-limited expression for aperture antennas, it is also
the exact definition of effective aperture for short dipole antennas !
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• Independent of the type of radiation, the number of spatial modes collected by a 
sensor is an important issue from a system standpoint, is difficult to estimate, and is 
even more difficult to measure.
• A useful approximation technique is based on a result from electromagnetic theory 
called the antenna theorem, which derives from two separate definitions of directivity 
given above, 

• Since Dmax is the maximum possible value of the directivity as predicted by 
diffraction theory, then the corresponding ΩB is the minimum possible beamwidth and, 
therefore, corresponds to the fundamental spatial mode of the antenna.  
• So if we rotate the ΩB beam in spherical coordinates to just fill up surface of a 
sphere, it would take approximately 4π/ΩB rotations to do this.  And since ΩB is the 
fundamental spatial mode, Dmax represents the number of spatial modes required to 
fill the entire sphere. Usually, sensors are designed to respond to a much smaller 
solid angle, called the field-of-view, ΩFOV.  And the number of spatial modes then 
becomes

The above relation is often re-stated as the following “antenna theorem”

Conceptually, it means that if the antenna is diffraction-limited, the product will 
reach its minimum value of λ2.  But it reminds us that practical antennas have 
electromagnetic or mechanical limitations which usually cause the fundamental 
beamwidth to grow beyond this minimum value.

In the diffraction limited case, we get the interesting result
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The Number of Spatial Modes and the Antenna Theorem
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This states a ν2 dependence on the number of modes,which we already
found was the case for free-space radiation in a “box” as defined through the
photonic density-of-states function for thermal radiation.  Here, we see it in more
general terms that can be applied to other coupling structures. A good example is
a feedhorn coupled to (WR-10) rectangular waveguide.  Here, the sharp cutoff
frequency of the waveguide modes allows us to calculate M separately.  Indeed,
the number of spatial modes approaches ν2 as the mode index gets large !
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Examples of modal function for (a) WR-10 waveguide, and (b) a lens-coupled Golay cell
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