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Free-Space Power Coupling for Two Special Cases: Radar and Radiometry 
 

Friis' Transmission Formulation 

 

 Marconi was the pioneer for a new generation of electrical engineers working in the area of 

“wireless”.  One of the truly brilliant amongst these was Friis working at Bell Laboratories in the 

1920s and 30s.  Among other things, Friis was the first to take advantage of the inherent nature of 

antennas as passive, reciprocal components, and treat the free-space propagation between a transmit 

antenna and receive antenna as a two-port “link”.  This was done first and foremost for the wireless 

communications “link”, which we review here first to set the stage for the following RF and THz 

sensor (i.e., radar and radiometer) “link” formulation. 

The first step in Friis’ formulation is the concept of an effective aperture Aeff for the 

receiving antenna,  

prrinceffrec SAP εφθ ⋅= ),(      (1) 

 

where Prec is the power available to the antenna for delivery to a load, ),( rrincS φθ is the average 

Poynting vector for incoming radiation along the direction (θr.φr) in the spherical coordinates 

centered at the receiving antenna, and εp is the polarization coupling efficiency.  Note that this 

expression applies only when ),( rrincS φθ is aligned with the direction of the beam-pattern 

maximum.  When there is misalignment, another factor is required which is the just the receive 

beam-pattern, 

 

prrincrrreffrec SFAP εφθφθ ⋅⋅= ),(),(  .    (2) 

 

Next, we suppose that this received Poynting vector is generated by a second, transmitting antenna.  

We can relate the received power to the properties of the transmitting antenna by: 
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where the subscript "t" is for transmitting, Prad is the total radiated power, Pin is the power used to 

drive the transmitting antenna (in the matched case, equal to Prad), θt and φt are the spherical angles 

in the spherical coordinate system centered at the transmitting antenna, τ (r) is the power 

transmission function including all attenuation effects, and r is the distance (i.e., the “range” 

between transmitter and receiver.  In writing (3) it is understood that Ft is taken in the direction 

(θt,φt) pointing towards the receiver, which is not necessarily the direction of the maximum of Ft.   

Substitution of (3) into (2) yields the relationship 
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This can be simplified further in terms of the (ostensibly) known parameters of the receiving 

antenna using the relationships, 
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where Pout is the power delivered to the load of the receiving antenna.  Substitution of (4) into (5) 

yields 
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the expression commonly known as Friis' formula after its originator.  It effectively treats the 

antenna combination like a two-port circuit with the pattern angular dependence and polarization 

dependence included explicitly.  The term (λ/4πr)2 is called the free-space loss factor, which is of 

considerable practical and historical importance.  Several theoreticians of the 19th century believed 

that radiation would decay faster than 1/r2 from a source.  It was Hertz's observation of this 1/r2 

dependence of radiation that encouraged the technology of "wireless." 

 



Notes #5, ECE594I, Fall 2009, E.R. Brown 
 

95 

 

Friis’ transmission for Radar 
 

For radar systems, the transmitter (in systems engineering often shortened to “Tx”) and the 

receiver  (often shortened to “Rx”) have, in addition to free space, a body between them (i.e., the 

radar "target") that scatters electromagnetic radiation from the Tx to the Rx.  To first order, some 

bodies (particularly round metallic ones) absorb practically none of the incident power and, instead, 

scatter it isotropically.  Conceptually, we can then think of the body as a passive Rx/Tx 

combination that receives a power according to (1) above and transmits it isotropically, so that 

 

|),(S||),(S|AP incinceffinc φθσ≡φθ=
rr

,  and    (7) 
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where σ is the (target) scattering cross section and r2 is the distance between the scatterer and the 

observation point.  We now assume that Sinc originates from a Tx antenna and Sscatt radiates back to 

a second (Rx) antenna to create an “echo” of received-aperture power Prec .  In this case,  
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where r1 is the distance between Tx and the scatterer, and εp is the fraction of the scattered power 

that has the same polarization characteristics as the Rx antenna. As in (5) above, we assume to 

know the Rx properties so that 
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where Pout is the power delivered from the Rx antenna to its load.  By substitution of (9) into (7), (7) 

into (8), (8) into (10), and (10) into (11), we find the relation 
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This is the famous "bistatic" (two stationary point) radar transmission equation.  In the special 

("monostatic") case that the transmitter and receiver share a common antenna, r1 = r2, Gr = Gt, Fr = 

Ft, τ(r1) = τ(r2) = τ(r ), and (12) reduces to 
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Like Friis' formula for communications, this treats the radar problem like a two-port equivalent 

circuit.  But physically it differs from Friis' with the additional r-2 factor, leading to an overall r-4 

dependence of Pout on Pin.  This result is of great practical importance because it generally means 

that radar systems must transmit much higher power levels than communications systems to 

achieve a satisfactory received power for signal processing. 
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Example: One application for THz radar systems is short-range concealed object detection and 
imaging.   This example calculates (a) the received power and (b) the background-limited signal-
to-noise ratio (SNR) for a 600 GHz bistatic coherent radar located 1 m from the target. 
(a) To get the received power, we make the following practical assumptions (1) the transmit and 
receive feedhorns are located side-by-side in close enough proximity that their antenna patterns 
in space overlap perfectly, (2) the transmit power is Pin = 1 mW at 600 GHz (λ = 0.5 mm), a very 
small number by microwave radar standards, but about all that is available today from affordable 
solid-state sources at 650 GHz (centered at one of the THz “windows”), (3) the antenna gain is 
100 (20-dB), easy to achieve from “standard gain” feedhorns without any other optics, (4) the 
target RCS is σ = 10-4 m2 (e.g., barrel of a hand gun), and (5) the polarization is scrambled so 
that εp = 0.5 (most concealed objects of interest, such as guns, have complicated shapes so are 
bound to scramble the incident polarization upon scattering).  The maximum antenna output 
power occurs when the peak of the antenna pattern is aimed at the target (i.e., F(θ,φ) = 1.0).  If 
we assume zero attenuation between Tx and the scatterer, we get Pout = 5.4x10-14 W, down over 
10 orders of magnitude compared to the transmit power !  And this is the “best-case scenario” 
since in the THz region the atmosphere and the materials concealing the object always attenuate 
significantly.   While appearing hopelessly low, this level of received power is not unusual in 
radar systems and remote sensors of all types, and can lead to useful detection if the receiver is 
designed correctly. 
(b) The background-limited SNR can be calculated assuming a terrestrial environment, single 
spatial mode operation of the receive feedhorn, and “bandlimited” receiver of bandwidth ∆f.   In 
this case, the average thermal power and rms power fluctuation collected by the receiver is just 
PN = kBT∆f where the background temperature is generally ~300 K anywhere in the THz region.  
One advantage of a coherent radar over an incoherent one (more on this later) is that the 
bandwidth can be made much more narrow, just great enough to accommodate the modulation 
bandwidth of the coherent “waveform” from the transmitter.   We will address “waveforms” 
more later on, but suffice it to say that modulation is generally used, sometimes amplitude 
modulation, sometimes phase or frequency modulation, to get other information from the radar 
about the target, such as its range.   Another reason to modulate the transmit power is to help 
mitigate the effect of other scatterers within the field-of-view of the radar, that collectively get 
called “clutter”.   For the present purpose, let’s assume the receiver bandwidth is 1 MHz.  The 
rms noise power is then PN = 4.1x10-15 W, leading to a “background-limited” signal-to-noise 
ratio of 13 or 11 dB.   As we will see later, insertion losses and physical noise in the receiver will 
generally make the background-limited SNR significantly lower than this, and clutter makes it 
worse yet.  But the background-limited value forms a “best-case scenario” this is always good to 
know in systems engineering. 
 

The radar-transmission equation is often re-formulated because the Rx output power is often 

known relative to a lower-limit, min
outP , dictated by noise in the receiver electronics or from 

environmental effects.  Then the interesting question is the maximum range at which a target of 

cross section σ can be measured.  Re-arranging Eq. (13) and assuming τ is independent of r we find 
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which is one form of the "radar range equation" -  very useful expression for predicting the 

performance of radar systems under ideal conditions.   In many practical cases, r is limited to a 

maximum possible value by the fact that Pout is masked by receiver noise, as shown next. 

 Another important application of (13) is the minimum transmit power required to achieve a 

certain minimum receiver power Pmin.  This can be calculated as 
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In some literature this is called the minimum required transmit power. 

 

Received Power in Radiometry: Antenna Back-Projection  
 
 Antenna reciprocity is a very important concept in RF sensors since it allows us to think 

about antennas interchangeably in transmit or receive modes knowing just the radiation pattern and 

its properties.  In radiometry we are usually concerned with detecting thermal radiation emitted 

from a target, or environmental radiation reflected from a target, at a distance great enough that the 

angle subtended by the target at the sensor, ΩT, may be greater or less than the diffraction-limited 

beam able ΩB.   

 An interesting application of the antenna theorem comes in using Planck’s radiation law to 

estimate the portion of the thermal emission from targets received by (passive) radiometers.   We 

start by re-writing the blackbody spectral density function, this time for just one polarization and 

one direction (hence the 4x reduction compared to that derived earlier) since different polarizations 

constitute different spatial modes: 

And now our interpretation of A is the antenna effective aperture.   Application of the diffraction-

limited antenna theorem yields 
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We recognize the factor 2π/ΩB as the number of spatial modes contained in one hemisphere if 

decomposed into the diffraction-limited solid angle ΩB of the antenna. 

Rarely, if ever, does a target occupy 2π steradians in space with respect to the sensor.  And 

generally the antennas in RF sensors operate with just one spatial mode.  So to estimate the received 

power, we use reciprocity to back-project the diffraction-limited beam to the target, recognizing 

that the number of diffraction-limited solid angles filled by the target is one if ΩT > ΩB, but less 

than one of ΩT < ΩB.  Mathematically, this leads to the received power spectral density: 

where Θ is the Heaviside unit step function.  This has the expected behavior that if the angle 

subtended by the target is larger than the beam solid angle and in the Rayleigh-Jeans limit, 

Sometimes this is called the “overfilled” condition.   But if the target angle is smaller than the beam 

solid angle, then the received power is less than expected from thermodynamic equipartition by the 

spatial “fill factor”, ΩT/ΩB, 
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