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Gaussian-beam methodology 

 A key assumption behind the predictions given from scalar diffraction theory is that the 

illumination across the aperture is uniform.  This is a good assumption in some circumstances 

such as predicting the power collected by a receive antenna from a distance source whose pattern 

beam-width measured at the receive antenna is much larger than the lateral extent of the receive 

antenna.  But there are other times when the uniform-intensity assumption is inaccurate, such as 

in describing the radiation coupled to a fundamental-mode feedhorn or planar antenna by a 

second feedhorn or antenna a short distance away.  This situation arises in many THz transceivers 

and simple bench-top set-ups where the power is transferred in free space “quasi-optically” from 

component-to-component; i.e, using traditional optical components from the visible region of the 

spectrum, such as lenses, but at the much longer wavelengths of THz or even lower-frequencies.  

As a matter of fact, such “quasi-optical” techniques started early in the history of microwave and 

millimeter-wave systems, but have been gradually replaced by transmission-line or guided-wave 

coupling techniques as printed integrated circuits have become available.  However, quasi-optical 

techniques persist in the THz region, largely because integrated circuits are much less prevalent, 

and the transmission lines and waveguides that interconnect them have much greater attenuation 

than at lower frquencies. 

 One of the useful features of scalar-diffraction theory is its ability to predict what 

happens to the radiation once the uniform-illumination assumption is violated.  For example, if 

the aperture is circular and if the illumination distribution is a Gaussian in the lateral plane with 

respect to the axis of symmetry, then the radiation pattern is also Gaussian, at least in the far-field 

limit.  Intuitively, this makes sense since in this limit the Fresnel-Kirchoff integral reduces to a 

Fourier transform, and the Fourier transform of a Gaussian is always a Gaussian.  It turns out that 

this result, commonly known as the Gaussian beam pattern, also applies to the near-field behavior 

with increasing accuracy as d/λ increases far beyond unity. 

Although the Gaussian-beam result was known early in the history of electromagnetics, it 

was apparently not fully appreciated until the advent of the laser.  The gain media in gas and 

solid-state lasers typically have very large values of d/λ, and generally emit much greater 

intensity at the center than at the lateral edges.   A useful way to develop the Gaussian behavior is 

to model the gain medium with a quadratic complex refractive-index lateral profile.1  

In the mm-wave and THz region, the applicability of Gaussian beams is less obvious on 

first glance, but becomes plausible when one considers the coupling between antennas and 

                                                           
1 A. Yariv, “Quantum Electronics, 2nd Edition”, (Wiley, New York, 1975), Chapter 6. 
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circuits.  MM-wave and THz antennas are often operated in their fundamental spatial modes for 

which the radiation intensity is maximum but rather slowly varying along the propagation axis.  

Then at the characteristic angle θ ≈ β/2 away from the axis the radiation begins falling rapidly in 

the lateral directions, with some radiation inevitably occurring at larger angles in the sidelobes 

because of diffraction.  All these properties except the undulation of the sidelobes are described 

rather well by a Gaussian function vs r with perfect azimuthal symmetry about the z axis.  This is 

the so-called fundamental Gaussian mode.  Other possible symmetric functions, such as a sech2 or 

Lorentzian, are either too steep about the propagation axis or decay too slowly at large angles.   

MM-wave and THz antennas are often operated in fundamental mode for practical 

reasons.  One reason is that the fundamental mode is generally the most symmetric and has the 

smallest beam width of all possible antenna modes.  Another reason is that the devices and 

circuits to which the antenna is coupled are designed for their own fundamental mode, be it in 

high-frequency transmission line or waveguide.  This is usually the easiest and most effective 

way to design mm-wave and THz active devices and circuits, but it generally makes the coupling 

between the circuits and antenna efficient only for one antenna mode, usually the fundamental 

mode.  These considerations break down, of course, if none of the electronics or components 

coupled to the antenna need to process radiation at high frequencies.  Such is the case, for 

example, in mm-wave and THz bolometers which merely rectify any incident power absorbed.  

Hence, bolometers can be and often are mounted in multimode antenna-like structures, such as 

integrating cavities, to maximize the sensitivity and spectral bandwidth. 

Finally, it is important to realize that any Gaussian beam is just one of an infinite number 

of modes forming an orthonormal TEM basis set.  This basis set is as applicable to representing 

arbitrary radiation in free space as any other orthonormal basis, and must comply with the 

antenna theorem defined earlier.  Each function of the basis set differs from the others in the 

degree of azimuthal symmetry about the propagation direction.  As alluded to above, the 

fundamental or TEM00 mode is the only one with perfect azimuthal symmetry, and is therefore 

the most popular and useful in solving free-space propagation problems in THz systems. 

Formulation 

One benefit of the Gaussian-beam approach is it tends to add improved accuracy in mm-

wave and THz design with only a minor increase in difficulty.  This is because Gaussian beams, 

much like Gaussian distributions in probability theory, behave well mathematically under system-

level operations.  Given a propagation direction along the z axis, the fundamental TEM00 

Gaussian beam is given in cylindrical coordinates (r,θ,z) by 
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where E0 is the maximum electric field amplitude, η is the intrinsic impedance of the medium of 

propagation, φ is a phase constant, ω is the radius where the intensity drops by e1 relative to the 

on-axis intensity (i.e., the “spot size”), or “beam waist,” and R is the radius of curvature.  

Fortunately, all of these quantities are inter-related through simple algebraic expressions: 
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from these expressions it is clear that ω(z) ≥ ω0, so that ω0 is the minimum spot radius and the 

maximum electric field occurs in the plane of constant z where ω(z) = ω0  which defines the 

“beam waist.”  In this plane the following simple form of the electromagnetic intensity is valid: 
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where η is the intrinsic impedance of the propagation medium.   Because the Gaussian integral is 

analytic if taken from r = 0 to ∞, the following useful relationship exists between the total 

propagating power and on-axis intensity at the beam waist: 
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Further satisfying properties of the Gaussian beam follow from Eqns 1 and 2 in the limit 
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the complex exponential approaches jexp[-jkz(1+r2/2z2)] .  Hence, provided that the observation 

point is such that r < z or R, the resulting electric field behaves as 
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which is the expected form of a spherical wave weighted by a beam-pattern function.  The 

important distance parameter z0 is called the Rayleigh length.  It also happens to be the distance 

for which R(z) equals its minimum value. 
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Another satisfying property is found by tracking the r = ω or 1/e profile of the beam in 
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Re-defining  ω0 as the lateral extent d of the Gaussian beam at its minimum aperture, we see once 

again a dependence of the far-field behavior on the ubiquitous “diffraction” ratio, λ/d.   

 All of these properties are exemplified in the curves shown in Fig. 1 for two 

representative Gaussian beams propagating in free space, one with a minimum spot diameter 2ω0  

= 5 mm (0.2 inch) and the other with 2ω0  = 100 mm (4 inch).  The wavelength of both is 1 mm 

and beam waists occur at z = 0.  For the smaller-waist beam, the Rayleigh length z0 is only ≈ 20 
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Fig. 1. Gaussian parameters: (a) spot diameter (2⋅ω0) (b) radius of curvature, and (c) on-
axis intensity for two typical mm-wave or THz situations: (1) λ = 1 mm, P = 1 mW, 
minimum spot size at beam waist = 2.5 mm; (2) λ = 1 mm, P = 1 mW, minimum spot 
size at beam waist = 50 mm. 
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mm so the beam quickly diverges to a full divergence angle of about 14o.  For the larger-waist 

beam, z0 is about 8 m, so the beam remains highly collimated out to this distance and then begins 

to approach a divergence angle of just under 1o.  Note that this larger beam would not be too 

difficult to support by a relatively simple telescope of aperture about 8 inches or more in diameter 

– that is, a man-portable instrument. 

The behavior of the larger beam in Fig. 1 illustrates an important potential advantage of 

mm-wave and THz propagation over that in the lower RF bands.  Namely, in applications where 

the remote sensor supports a Gaussian beam and the object or target is at a short range not much 

greater than the Rayleigh length, the divergence of the beam between the two can be very small.  

And thus the intensity will drop far slower than the 1/r2 spherical-wave behavior in the “far-field” 

of every common antenna. 

Transformation of Gaussian beams: An representative system example 

 A second benefit of the Gaussian beam approach is its tendency to remain Gaussian 

through transformation by various optical two-port components, such as lenses and mirrors.  As 

in microwave network theory, passive optical two-ports can be represented by a number of 

different 2x2 matrix formulations depending on the physical formulation of the propagating 

electromagnetic mode.  A common formulation in optics is the “ray,” represented by a column or 

row vector [r(z), r’(z)], where r is the distance from the propagation axis and r’ is the slope of the 

ray with respect to this axis.  Optical components are represented by 2x2 ABCD matrices, and an 

input ray is transformed according to 
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Some good examples of such matrices are: (1) free space path of length L, A=1,C = 0, and D = 1; 

(2) thin lens of focal length f: A = 1, B = 0, C = -1/f, D = 1.   The accuracy of this formulation is 

best for “paraxial” rays, i.e., those propagating close to the optical axis. 

Remarkably, the ABCD representation also applies to Gaussian beam propagation 

through the definition of a complex Gaussian beam parameter 
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where qi is the beam parameter in a plane z = zi .  Note that the free-space ABCD matrix simply 

transforms as qi+1 = qi + L. 

As an illustrative example of the Gaussian beam approach, Fig. 2 shows the modeling of 

the radiation propagation in a system familiar to the author: the THz photomixing spectrometer.  

In this case, coherent mm-wave and THz radiation is generated selectively by beating two 

frequency-offset lasers in a small photoconductive element mounted at the driving point of a 

planar antenna.  The planar antenna is located on a semi-insulating GaAs or InP substrate – both 

having very low absorption in the THz region but difficult to make antennas with because of their 

high dielectric constant , εr ≈ 13.  Therefore, the photomixer substrate is abutted to the back-side 

of a high-resistivity silicon hyperhemisphere.  The radiation coming out of the hyperhemisphere 

will likely be diverging, so a second focusing lens (e.g., plastic) is added at some distance to 

focus the radiation down to a beam waist. Since the purpose of the spectrometer is to provide 

radiation to a sample cell for THz spectroscopic analysis, an interesting question is if and where 

this beam waist will occur, and how big the minimum spot size will be. 

The solution is found by first estimating the pattern coming out of the planar antenna as 

an equivalent Gaussian beam as shown in the exploded view of Fig. 2.  The two curved loci in 

this view represented the r = ω  points.  The beam propagates through the GaAs or InP substrate, 

into the Si hyperhemisphere, and is then transformed into free space using an ABCD matrix 

appropriate to a spherical-dielectric interface.2  To avoid significant total-internal reflection, the 

hyperhemisphere can provide only a slight transformation of the beam, which remains diverging 

after passage through the Si-air interface. 

The free-space Gaussian beam then propagates to the (plastic) plano-convex lens which 

transforms the diverging Gaussian beam to a converging beam through the application of the thin-

lens ABCD matrix.  By judiciously varying the hyperhemisphere-to-plano-convex separation, we 

achieve the beam waist shown in Fig. 2.  The waist shown has a minimum spot size ω0 ≈ 1.5 mm, 

consistent with the given frequency (300 GHz), the planar-antenna spot size (0.2 mm), the radius 

and set-back of the Si hyperhemisphere (5.0 and 1.76 cm, respectively), and the focal length and 

diameter of the plastic lens (2.0 and 2.0 inch, respectively).   

                                                           
2 A. Yariv, IBID. 
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Fig. 2. (a) Results of Gaussian-beam design of THz photomixer spectrometer as a 

representative problem in system-level free-space radiation transformation 
and coupling. (b) Exploded view of photomixer region consisting of planar 
antenna, semi-insulating substrate and Si hyperhemisphere. 

 


