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THz Receiver Architectures and the Process of Detection 

  

 As discussed in the Introduction, an important aspect of all THz sensor design, and all RF 

systems in general, is receiver architecture.   There are two types, incoherent and coherent, both shown 

schematically in Fig. 1.   The incoherent architecture is as old as RF technology itself and the coherent 

came soon thereafter, dating back to the early part of the 20th century.   Like many other system 

architectures, they persist largely by the ability of engineers to continually improve performance by 

perfecting the components.  In this set of notes, we will address these “canonical” receiver architectures,  

Then we will look more closely at the concept of “detection”, which is so important to understanding how 

RF systems perform. 

 

Canonical Receiver Architectures 

A. Direct-Detection  

The block diagram of a generic direct receiver is shown in Fig. 1(a).   The incoming radiation 

from the target, be it thermal emission or transmitted power from the sensor itself, is collected by the 

receiver where it is rectified from RF (THz) to baseband by a “direct” detector.  In most practical cases 

the baseband is defined by amplitude or frequency modulation of the incoming signal to reduce the effect 

of gain drifts and 1/f noise that occurs in the THz electronics.  The rectified THz signal is then amplified 

and demodulated down to DC using synchronous detection.  For AM modulation the synchronous 

detection is often carried out using a lock-in amplifier.   

 In the THz region the direct detector is almost always a power-to-voltage or power-to-current 

converting device.  That is, it is a device that puts out a voltage or current in proportion to the incoming 

power.  There are many examples of such devices, but the most popular are field detectors and 

bolometers.  Field detectors, such as Schottky diodes, respond directly to the THz electric field and 

generate an output current or voltage through a quadratic term in their current-voltage characteristic.  

Bolometers are composite devices consisting of a THz absorber and a thermistor.  The THz absorber is 

generally isolated thermally from the environment so that the absorbed THz power raises the temperature 

both of the absorbing layer and an attached thermistor.  The thermistor is, by definition, a device that 

displays a large change of resistance to a small change of temperature.  In some bolometers, such as the 

composite type, the absorber and thermistor are separate elements.  In other bolometers, such as the hot 

electron type, they are integrated into the same device. 
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A key factor in all direct detectors is spectral bandwidth.  As in most analyses of signal processing, we 

assume here that this is band limited between νo and νo + ∆ν.  This can be a real bandwidth defined by a 

THz bandpass filter, or it might be an approximation to a real spectrum. 

B. Pre-Amplified Direct Detection 

 One of the most successful areas of RF electronics during the past decade has been monolithic 

microwave integrated circuits (MMICs).  By integrating active devices, some passives, and matching 

circuits on the same semi-insulating substrates, it has become possible to fabricate low-noise amplifiers 

(LNAs) up to frequencies of 100 GHz and beyond.1,2  For example, LNAs having a gain of   17 dB, 

bandwidth of  30 GHz, and a noise figure of  6 dB have been fabricated and tested around 94 GHz.  The 

advantage of an LNA is that if it has adequate gain, it can dominate the noise figure of the following 

square-law detector, leading to a much lower NEP than can be achieved by direct conversion using the 
                                                           
1 H. Wang, L. Samoska, T. Gaier, A. Peralta, H. H. Liao, Y. C. Leong, S. Weinreb, Y. C. Chen, M. Nishimoto, and R. Lai, 
“Power amplifier modules covering 70-113 GHz using MMICs,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 9-16, Jan. 
2001. 
2 S. Weinreb, T. Gaier, R. Lai, M. Barsky, Y. C. Leong, and L. Samoska, “High-gain 150-215 GHz MMIC amplifier with integral 
waveguide transitions,” IEEE Microwave Guided Wave Lett., vol. 9, pp. 282-284, July 1999 
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same square-law detector.   As will be shown later, the sensitivity of the preamplified direct receiver can 

then approach the photon-noise (quantum) limit. 

C. Heterodyne 

 In the heterodyne system of Fig. 1(b), incoming radiation from the target, be it thermal emission 

or transmitted power from the sensor itself, is combined with power from a local oscillator (LO) on a THz 

mixer.  If the signal and LO frequency are different, there will be a beat-note generated at an intermediate 

frequency (IF) between the THz signal and baseband.  This is called heterodyne conversion.   It the signal 

and LO frequency are equal, the beat tone degenerates to dc, and the process is called homodyne 

conversion.  Independent of the conversion process, all coherent detectors require a device that can 

generate an efficient conversion of the RF power to the IF band.  The most popular mixers are field-type 

devices having a strong quadratic nonlinearity.   Good examples are Schottky diodes, superconductor-

insulator-superconductor (SIS) tunnel junctions,3,4  and superconducting hot-electron bolometers.5 

 Coherent down-conversion has several unique features that distinguish it from direct detection.  

First, mixing a weak signal with a relatively strong LO effectively amplifies the received signal relative to 

the receiver noise floor, which can greatly improve the sensitivity compared to direct detection.  Second, 

for the typically weak signals in the THz region, the mixing process is linear.  That is, the signal power at 

the IF frequency is linearly proportional to the signal power at the input.  Therefore, the receiver passband 

can be defined by an IF band pass filter, which is generally much lower in cost and has much higher 

performance than any THz filter.   This feature tends to make coherent receivers the favored approach in 

applications requiring high spectral resolution, such as molecular spectroscopy.6  But as will see later, the 

direct receiver tends to be preferable in wideband applications such as thermal imaging because of its 

superior spectral bandwidth and simplicity. 

 A related advantage of heterodyne over direct detection is the preservation of phase information 

of the received waveform, X.  If the IF band is low enough in frequency that analog-to-digital conversion 

(ADC) can be done, then it is possible to digitize the IF signal and retain phase information assuming that 

the Nyquist sampling criterion is met.  That is, the digitization must be done so that at least two samples 

are taken per cycle of the highest frequency component in the IF power spectrum.  With modern ADC 

technology, this can be done with high precision (related to the number of bits used in the ADC) and high 

                                                           
3 A. H. Dayem and R. J. Martin, “Quantum interaction of microwave radiation with tunneling between superconductors,” Phys. 
Rev. Lett., vol. 8, pp. 246-248, Mar. 1962. 
4 G. J. Dolan, T. G. Phillips, and D. P. Woody, “Low noise 115 GHz mixing in superconductor oxide barrier tunnel junctions,” 
Appl. Phys. Lett., vol. 34, pp.347-349, Mar. 1979. 
5  D. E. Prober, “Superconducting terahertz mixer using a transition-edge microbolomoeter,” Appl. Phys. Lett., vol. 62, no. 17, 
pp. 2119-2121, 1993. 
6 J. W. Waters, “Submillimeter-wavelength heterodyne spectroscopy and remote sensing of the upper atmosphere,” Proc. IEEE, 
vol. 80, pp.1679-1701, Nov. 1992. 
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speed at the same time.  For example, it is possible to get ADCs commercially that provide 14-bit 

accuracy (amplitude range of 16384 decimal, unsigned, or 84 dB) operating at several hundred 

megasamples per second. 

 The advantage of maintaining the phase is that one can then carry out the detection process more 

optimally than by direct detection in terms of signal-to-noise ratio.   A straightforward way to achieve 

optimal detection is with a correlator.  And as shown in Fig. 1(c), correlation is best carried out digitally 

because of the mathematical precision required.  In addition, cross correlation can provide other 

information, such as target range, and clutter information.  In any case, the overall process of optimizing 

the signal-to-noise after detection by processing the phase-coherent waveform optimally is called 

“matched filtering.”  We will discuss this much more later on.  For now, it is already good to know that 

optimum performance is possible, but depends on a lot of factors.   

D. Pre-Amplified Heterodyne 

 An intriguing possibility in the millimeter-wave band and lower end of the THz range is a 

preamplifier feeding a mixer element, as shown optionally in Figs. 1(b) and (c).  With recent advances in 

MMIC solid-state power amplifiers and the possibility of integrating them with high-frequency Schottky 

mixers monolithically, one can envision a receiver in which an antenna couples radiation to an LNA that, 

in turn, is coupled to a high-frequency mixer.  The mixer then down-converts the radiation to whatever IF 

band makes sense, be it narrowband for spectroscopic applications, or wider band for thermal imaging 

applications.  Intuitively, one could design the LNA with just enough gain so that the overall receiver 

sensitivity was not affected significantly by the mixer or following IF electronics.  As will be shown later, 

this provides excellent overall performance if the LNA noise figure is acceptably low.  And not 

surprisingly, it is the same architecture used at lower frequencies in communications and radar receivers 

alike, perhaps most commonly in the handsets of nearly every mobile telephone made today at PCS 

wireless frequencies. 

The Detection Process 

 Just as in communications systems, the receiver of an RF sensor must ultimately extract 

information from the received RF power.  As we have seen, RF sensors generally utilize different types of 

information than the time-domain bits of communications systems.  There is spatial information in the 

form of extent and range, there is motional information in the form of Doppler frequency shifts, and there 

is spectral information in the form of emissive or reflective signatures.  But just like communications 

systems, extracting this information necessarily entails energy transfer between the source and the 

receiver.  And energy transfer is always measured as a time-average over the instantaneous power flow, 

just as occurs in Poynting’s theorem. 
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Mathematically, time averaging is just integration.  Electrically, integration in the time domain is 

equivalent to low-pass filtering in the frequency domain.  So given this line of reasoning, the extraction of 

information is tantamount to low-pass filtering from dc up to some ac frequency dictated by the 

information bandwidth.  In communications systems, this low-frequency range of frequencies is called 

“baseband”.  In RF sensors, it is often called the detection band.  In either case, it is generally much less 

in bandwidth than the RF center frequency.  And as we will see later, it does not want to be any greater 

than about one-half of the (Nyquist) sampling frequency required by the information being extracted.  The 

reason for this is related to optimizing the sensor signal-to-noise ratio, as we shall see shortly. 

 In RF sensors the process of extracting energy from the RF signal is called detection – a generic 

title that sometimes gets confused with the act of electrical rectification.  Indeed, rectification such as 

occurs in Schottky diodes and other nonlinear electrical devices, does convert RF power transfer into a 

low-frequency (dc) term, usually proportional to the time-averaged power.  But detection covers many 

other possible ways of doing the same thing, two of the most powerful and useful of which are 

multiplication (e.g., synchronous detection) and cross-correlation.  

Insight can be gained into all of these detection schemes by analyzing perhaps the simplest 

imaginable detection scheme, which is square-law detection.  A square-law detector is represented 

electrically by the simple input-output (i.e. transfer function) relation, 

 

y = Ax2 

It is simple to see how such a transfer function can generate dc information from RF power delivery.  It is 

not so easy to see how this can improve the signal-to-noise ratio, so that becomes a goal of the following 

analysis.  We will derive the effect on the signal-to-noise ratio of a square-law-detector followed by an 

integrator.  We will use three different methods: (1) analog signal processing, (2) digital signal 

processing, and (3) rigorous probability theory.  All three lead to the same result, but provide different 

insight into the problem and emphasize how important the nonlinear detection process to RF sensors. 

 

A. (Intuitive) Analog Method 

A.1. Coherent Signal 

 

 We represent the coherent input signal by 

 

x(t) = B cos(ωt + φ) 

which by trigonometry becomes 

     y(t)  = (AB2/2) {1 + cos[2(ωt + φ)]} 
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So if the integration time of the low-pass filter, t, is >> 1/ω, then its (time-averaged) output becomes 

     y =  AB2/2  ≡ ℜ P  

where ℜ is called the responsivity.  

A.2. Thermal Signal Input 

We assume the thermal input signal is additive white Gaussian noise, band-limited to center 

frequency ν0 and bandwidth ∆ν, as shown in Fig. 2(a).  In this case Fourier components at different 

frequencies are uncorrelated, but any given nonzero component will produce an average output over time 

by virtue of the quadratic effect of the square law detector.  This notion is captured mathematically by  

0 0

0 0

/ 2 / 2
2 2 2 2

/ 2 / 2

( ) ( ) ( ) ( )
t

t

y Ax t A x t dt A x d A x d
ν ν ν ντ

ν ν ν ν

ν ν ν ν
− +∆ +∆+

− −∆ −∆

= = ≈ +∫ ∫ ∫  

where the overbar denotes time averaging, x(ν) is the Fourier transform of x(t), and the last step follows 

from the Parseval’s relation for all Fourier transform pairs.  Note that negative frequencies are included 

here since Gaussian noise has random phase.   So there is a second effective passband just like the one 

shown in Fig. 2(a) but located symmetrically about ν = 0.   Neither the time integral nor frequency 

integral extend to infinity as in Applied Math books since the time averaging process is limited by the 

integration time τ and the input power spectrum is band-limited to ∆ν.  Since x2(ν) is just the power 

spectral density Sx(ν), we can write 

0 0

0 0

/ 2 / 2
2

/ 2 / 2

( ) ( ) ( ) 2x x iny A S d A S d A x P
ν ν ν ν

ν ν ν ν

ν ν ν ν ν
− +∆ +∆

− −∆ −∆

≈ + = < ∆ > ⋅∆ = ℜ⋅∫ ∫  

where the second step follows by assuming the power spectrum for x is “white.”  This is the same result 

as for a coherent signal.   In other words, Gaussian fluctuations deliver an average power through square-

law multiplication and integration, just like a coherent signal, but it is only the self-product of individual 

Fourier components that contribute. 

A.3. Noise 

Different Fourier components of Gaussian noise at the input to the square law detector produce a zero 

output after averaging, but still contribute a fluctuation and therefore, output noise.  In other words, they 

create difference-frequency components that should also be zero-mean, but not necessarily Gaussian.  So 

we need to calculate the output power spectral density 
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2 2 2 2( ) ( ) ( ) ( )
t t

j t j t
y
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ω ω
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− −= =∫ ∫ . 

We now can apply the convolution theorem for Fourier transforms, which states that the transform of a 

product of Fourier transformed functions is equal to the convolution of the original functions.7  We apply 

it by recognizing x2(t) as the Fourier transform of Sx(ν), and get the convolution integral 

2( ) ( ) ( )y x xS f A S S f dν ν ν
∞

−∞

= −∫  

0 0

0 0

/ 2 / 2
2 2

/ 2 / 2

( ) ( ) ( ) ( )x x x xA S S f d A S S f d
ν ν ν ν

ν ν ν ν
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− +∆ +∆

− −∆ −∆

≈ − + −∫ ∫  

This expression can be understood qualitatively from Fig. 2(a) and (b) which show only the positive-

frequency portion and take advantage of the symmetry about ν = 0 by showing the product Sx(ν)Sx(ν-f).   

If we look at small difference frequencies as in 1(a), there are a maximal number of input Fourier 

components available, proportional to the input RF bandwidth ∆ν.  But for large difference frequencies, 

the number of available input Fourier components drops until we reach the minimal condition depicted in 

Fig. 2(b) where just the extremes of the input spectrum are effective.   The resulting output spectrum is 

given by  

     Sy (f) ≈ 2A2 (Sx)2 ∆ν (1 – f/∆ν) 

                                                           
7 See, for example,  “Mathematial Methods of Physics,” G. Arfken (Academic, 1970), 2nd Ed., Sec. 15.5. 

SY(f)SY(f)

f
 

Fig. 2. 
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where Sx is the input power spectral density at any frequency in the passband.  Note that as plotted in Fig. 

2(c) this is a distinctly-non-white triangular spectrum centered at zero frequency - our first clue that the 

output noise statistics are not Gaussian.  But the input noise is “white,” so we can estimate it as 

     (Sx)2 ≈  (ℜ2/A2)<(∆Pin)2>/<(∆ν)2> 

Substitution into the previous expression yields 

Sy ≈ 2ℜ2 (∆Pin)2 (1 – f/∆ν)/∆ν 

which is the best form to calculate the quantity that we really want – the output signal-to-noise ratio. 

A.4. Output Signal-to-Noise Ratio 

 

Whether Gaussian or not, a good measure of the signal-to-noise ratio, and the one we have adopted 

exclusively to this point, is the ratio of the average power to power deviation at any point in the receiver.  

At the output of the integrator, this is given by 

SNRout = 
2

2( )
y
y< ∆ >

 

where    <(∆y)2> = 2 2

0 0

1 /( ) 2 ( )y in
fS f df P df

ν ν
ν

∞ ∆ − ∆
≈ ℜ ∆

∆∫ ∫  

Under most conditions, we will want to integrate much longer than 1/∆ν (a practice sometimes called 

“bandwidth narrowing”), which corresponds to limiting the above integral to a range 0 to fmax = ∆f << ∆ν.   

Under this condition, the rather slowly varying triangular spectrum can be treated like a constant at the 

peak value.  We then get the result, 

<(∆y)2> 2 2 2 2

0

2 ( ) 2 ( )
f

in in
df fP P
ν ν

∆ ∆
≈ ℜ ∆ ≈ ℜ ∆

∆ ∆∫  

The output SNR is then approximated by 

2 2
2

2 2 2

( )
( ) 2 ( ) / 2

in
out in

in

y PSNR SNR
y P f f

ν
ν

ℜ ∆
= ≈ = ⋅

< ∆ > ℜ < ∆ > ∆ ∆ ∆
 

showing clearly that the output SNR is improved in proportion to the “bandwidth narrowing” and also as 

the input SNR squared.   As we shall see later, the same thing happens with the passage of a coherent 

signal embedded in AWGN through a correlator, in which case a factor proportional to ∆ν/∆f is called the 

“processing gain.”  But the above derivation shows that the SNR improvement can even happen for 

AWGN alone when the average power is considered the “signal”.  This is the case for most passive 

radiometers collecting thermal radiation in any RF band. 
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B. (Intuitive) Digital Method 

 

It is interesting to consider the same combination of square-law detector and low-pass filter as above 

but from a digital sampling perspective.  We assume the signal is coherent and is sampled in ns successive 

pulses so that the output signal power Sout = (nsSin)2.  In the same process, the output noise will increase 

but slower with ns since each successive pulse is assumed uncorrelated from the rest.  It is reasonable to 

assume that the output noise power Nout = ns(Nin)2.  Hence we can write, 

    
2

2
2

( )
( )
s in

out s in
s in

n SSNR n SNR
n N

= = ⋅  

Of course the maximum number of samples that can be made in ts is limited by sampling theory to 

      ns ≈ ∆ν ts 

And for the network at hand, the sampling time is related to the low-pass filter bandwidth by the 

Nyquist condition 

      ts = 1/(2∆f) 

So we get once again, 

     SNRout =  2

2inSNR
f

ν∆
∆

 

C. Exact Method (based on probability theory) 

 

We can derive the effect of a square-law detector on the SNR exactly using methods of 

probability theory.  We assume that the noise at the input is AWGN having zero mean, so can be 

represented by the normalized pdf 

 

    p1(x) = (2πσ2)-1/2 exp(-x2/2σ2 )           (1) 

 

where σ is the standard deviation and σ2 is the variance.  If zero-mean AWGN is put through the square-

law detector, the output pdf associated with electrical variable y is found from the transfer relation y = 

Ax2 and (1) by the general relationship between a pdf and a cumulative distribution function P 

     p2(y) = (d/dy)P(y) 



Notes #7, ECE594I, Fall 2009, E.R. Brown 

117 

The form of P is given by inspection of the square-law transfer curve and realization that p(x) assumes 

both negative and positive values of x, but p(y) must only allow for positive values of y: 
1/ 2

1/ 2

( ) ( / )

1 1
( ) ( / )

( ) ( ) ( )
x y y A

x y y A

P y p x dx p x dx
+

− −

= =∫ ∫    (2) 

1/ 2

1/ 2

( / )

2 1
( / )

( ) ( )
y A

y A

dP dp y p x dx
dy dy

−

≡ = ∫  

1/ 2 1/ 2 1/ 2 1/ 2
1 1( / ) [ ( / ) ) / ] ( ( / ) )[ ( / ) / ]p y A d y A dy p y A d y A dy= − − −   (3) 

where the last step follows from Leibniz’ rule of calculus.8  Combining (1) and (3) we get 
2

2 2

exp( / 2 )( )
2

y Ap y
yA

σ
πσ

−
=      (4) 

which is called the “chi-squared” density function plotted in Fig. 3 for A = 1 and σ2 = 1, 10, and 100.  It is 

a simple exercise to show that it has all the usual properties of a pdf, such as normalization: 

2
0

( ) 1p y dy
∞

=∫  

One peculiarity is that it has an integrable singularity at y = 0.   Physically, this means that low amplitude 

fluctuations are much more likely than high amplitude ones, which is sometimes called the “smoothing” 

effect of square-law detectors.  Interestingly, for the AWGN input, it yields mean and mean-square values 

2
2

0

( )y yp y dy Aσ
∞

< >= =∫  and 2 2 2 4
2

0

( ) 3y y p y dy A σ
∞

< >= =∫  

So the variance is given by  
2 2 2 2 4( ) 2y y y A σ< ∆ >=< > − < > =  

 Our goal in this exercise is to rigorously predict the possible improvement in signal-to-noise ratio 

had by the combination of a square-law detector and a low-pass filter.  So now that we know the statistics 

of the electrical fluctuations after the square-law detector, it is convenient to convert this knowledge into 

the time domain.  The tool for doing this is the autocorrelation function,  

     Rx(t1,t2) ≡ <x1x2> 

                                                           
8 A rule often not stated in calculus books but very useful nonetheless: 

( ) ( )
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( , ) ( ) ( )
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u u u u
∂ ∂ ∂ ∂

= + −
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Where x1 and x2 are the possible values of the same electrical variable x at different times t1 and t2, 

respectively.  In generally, this transformation from ensemble averages to correlation functions is a 

difficult one, but becomes tractable in the special case of stationarity.   Roughly speaking, this means that 

the pdf and all ensemble averages (i.e., expectation values) derived from it are all independent of time.   It 

also means that the autocorrelation function is independent of any reference point in time, so that 

     Rx(t1,t2) = Rx(t, t + τ) = Rx(τ) 

In other words, the autocorrelation function depends only on a time difference τ, not the absolute time. 

 After the square law detector, we can write for the autocorrelation function 

    Ry(τ) = <y1y2> = <A(x1)2a(x2)2> = A2<(x1)2(x2)2> 

It is well known from probability theory that the ensemble average of the product of the product of two 

independent random variables is equal to the product of the their averages.  Similarly, the mean value of 

the product (x1)2(x2)2 can be considered as the mean value of x1x1x2x2  which can be shown by 

permutation 
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< x1x1x2x2>  = < x1 x1><x2x2>+ < x1x2><x1x2> + < x1x2><x1x2> 

= <(x1)2><(x2)2> + 2< x1x2>2 

= <(x)2>2 + 2[Rx(τ)]2 

Therefore, we can write for the autocorrelation function at the detector output 

Ry(τ) = A2<(x)2>2 + 2A2[Rx(τ)]2 

But if the input pdf p1(x) is given by (1) (i.e., AWGN), then <(x)2> = <(∆x)2> + (<x>)2 = <(∆x)2> = σ2 .  

And we get 

Ry(τ) = A2σ4 + 2A2[Rx(τ)]2    (5) 

Given this relationship between autocorrelation functions at the input and output, a very useful tool is the 

Wiener-Kinchine (WK) theorem discussed previously which in general relates the autocorrelation 

function to the power spectral density by a Fourier transform: 

1( ) ( )exp( )
2 xS R j dω τ ωτ τ
π

∞

−∞

= −∫    (6) 

or by the inverse transform 

1( ) ( )exp( )
2xR S j dτ ω ωτ τ
π

∞

−∞

= ∫     (7) 

Upon Fourier transforming (5) using (6), we can  write 

Sy(ω) = A2σ4 δ(ω)+ 
22 ( ')exp( ' ) ( )exp( ) '

2 x x
A S j R j d dω ω τ τ ωτ ω τ
π

∞ ∞

−∞ −∞

−∫ ∫   (8) 

Where δ(ω) is the Dirac delta function and  we have expanded one of the Rx terms in (5) using (7) 

and the dummy frequency ω’ .  Separating independent variables, we can write (8) as  

Sy(ω) = A2σ4 δ(ω)+ 
22 { ( ') ( )exp[ ( ') ] } '

2 x x
A S R j d dω τ ω ω τ τ ω
π

∞ ∞

−∞ −∞

− −∫ ∫  (9) 

= A2σ4 δ(ω)+ 
22 { ( ') ( ') '

2 x x
A S S dω ω ω ω
π

∞

−∞

−∫  

or in terms of linear frequency ν, 

Sy(ν) = A2σ4 δ(ν)+ 
22 { ( ') ( ') 'x xA S S dν ν ν ν

∞

−∞

−∫    (10) 

This is starting to look familiar.  The first term is the dc component, and the second is the same 

convolution of input power spectra that we wrote down earlier in the intuitive analog derivation.  In other 

words, the first term is the signal, and the second term is the noise. 
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 Now that we are in the frequency domain, we can make practical assumptions about the 

bandwidth at input and output.  For the AWGN assumed to this point, SX is “white” and band-limited 

over a range from ν0 to ν0 + ∆ν.  Mathematically this can be expressed as the “window” function, 

Sx(ν) = S0 θ(ν – ν0) θ( ν0  + ∆ν − ν )    (11) 

where θ is the unit step function.  Substituting (11) into (10), we get the convolution of two window 

functions, which intuitively and mathematically leads to a triangle function: 

2
0{ ( ') ( ') ' 2 (1 / )x xS S d Sν ν ν ν ν ν ν

∞

−∞

− = ∆ − ∆∫    (12) 

The final result of (10) is then 

Sy(ν) = A2σ4 δ(ν) + 2
02 (1 / )S ν ν ν∆ − ∆    (13) 

where the noise spectrum after the square-law detector is triangular !  But because the input noise is 

assumed to be “white”, we can re-write it as  

     (S0)2 = R2 (<(∆P)2>/(∆ν)2 

and the output spectrum becomes 

Sy(ν) = A2σ4 δ(ν) + 2 R2 {(<(∆P)2>/(∆ν)}{1 - ν/∆ν}    (14) 

At this point we make the same observation as before, namely, that we can take great advantage 

of the non-white output spectrum by following it with a (linear) low-pass filter whose bandwidth, ∆f, is 

much less than ∆ν.  In this case, the output electrical fluctuations are just 

2

0

( ) ( )
f

yy S dν ν
∆

< ∆ >= ∫ ≈ 2 R2 <(∆P)2>⋅∆f/∆ν 

Since the input is zero-mean AWGN, σ2 = <(∆x)2> = <x2> .  So the ratio of the 1st and 2nd terms in (14) 

becomes 

SNRout = <y>2/<(∆y)2> = A2<x2>2/2 ℜ2 <(∆P)2>⋅∆f/∆ν 

  = ℜ2<P>2/{2 ℜ2 <(∆P)2>⋅∆f/∆ν }= (∆ν/2∆f)⋅(SNRin)2 

This is the same result as derived above by the (intuitive) analog and digital-sampling techniques, now 

justified using rigorous probability theory across the time and frequency domains. 

 


