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Noise effects and signal-to-noise ratio 
  
 In this course we have seen how to deal with radiation in terms of the average power 

transmitted through free space between a target and a sensor.  We have also shown how to deal with 

the fluctuations of this radiation that occur whether it is incoherent (e.g., thermal) or coherent 

(sinusoidal).  For passive RF systems, the radiation propagation through free space is generally 

handled by the antenna theorem and effective source brightness function.  For active systems, the 

radiation propagation is generally handled with Friis’ transmission formula. 

 The received power is generally very weak in sensor systems, typically orders-of-magnitude 

weaker than it is in communications systems.  So an important issue with any sensor system is 

“masking” of the signal by fluctuations in the power (i.e., the “noise”) in the receiver. The “noise” 

is the totality of all the electronic mechanisms, in addition to the radiation fluctuations.  Such noise 

is always present, even in the absence of electronic noise, so it is important to define a metric for 

the sensor performance in the presence of noise.  A useful metric for all types of sensors is the 

power signal-to-noise ratio (SNR).   
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where SP is the power spectral density and BENB is the equivalent noise bandwidth at that point in 

the sensor 
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where G(f) is the sensor gain function vs frequency, and Gmax is the maximum value of this gain 

BENB is generally dictated by sensor phenomenology, such as the resolution requirements and 

measurement time. 

Noise from Electronic Components 

 

Within every sensor system, particularly at the front end, are components that contribute 

significant noise to the detection process and therefore degrade the ultimate detectability of the 

signal.  The majority of this noise usually comes from electronics, particularly the first device, 

which is often a mixer or direct detector.  After this there is generally a low-level amplifier that 

contributes comparable noise.  The majority of noise from such devices falls in two classes: (1) 

thermal noise, and (2) shot noise.  Thermal noise in semiconductors is caused by the inevitable 
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fluctuations in voltage or current associated with the resistance in and around the active region of 

the device.  This causes fluctuations in the voltage or current in the device by the same mechanism 

that causes  resistance – the Joule heating that couples energy to and from electromagnetic fields.   

The form of the thermal noise is very similar to that for free-space blackbody radiation.  And the 

Rayleigh-Jeans approximation is generally valid for room temperature operation, so that the 

Johnson-Nyquist theorem applies.  However, one must account for the fact that the device is 

coupled to a transmission line circuit, not to a free space mode, and the device may not be in 

equilibrium with the radiation as assumed by the blackbody model. 

All of these issues are addressed by Nyquist’s generalized theorem 

∆Vrms =  [4kBTDRe{ZD}∆f ]1/2 

where TD, ZD , and ∆f are the temperature, differential impedance, and bandwidth of the device. 

Even this generalized form has limitations since it is not straightforward to define the temperature 

of the device if it is well away from thermal equilibrium. 

Shot noise is a ramification of the device being well out of equilibrium.  It is generally 

described as fluctuations in the current arriving at the collector (or drain) of a three-terminal device 

caused by fluctuations in the emission time of these same carriers over or through a barrier at or 

near the emitter (or source) of the device.  The mean-square current fluctuations are given by 

fIei ∆⋅Γ>=∆< 2)( 2  

where Γ is a numerical factor for the degree to which the random Poissonian fluctuations of 

emission times is modified by the transport between the emitter (or source) and collector (or drain).  

If  Γ = 1, the transport has no effect and the terminal current has the same rms fluctuations.  When Γ 

< 1, the transport reduces the fluctuations, usually through some form of degenerative feedback 

mechanism, and the shot noise is said to be suppressed.   When Γ > 1, the transport increases the 

fluctuations, usually through some form of regenerative feedback mechanism, and the shot noise is 

said to be enhanced. 
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Linear Components and Noise Factor 

 

While at first appearing to add insurmountable complexity to sensor analysis, a great 

simplification results from the fact that radiation noise and two forms of physical noise discussed 

above are, in general, statistically Gaussian (the shot noise becomes Gaussian in the limit of large 

samples, consistent with the central limit theorem).  A very important fact is that any Gaussian 

noise passing through a linear component or network remains statistically Gaussian.  Hence, the 

output power spectrum S in terms of electrical variable X (current or voltage) will be white and will 

satisfy the important identity 
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where ∆f is the equivalent-noise bandwidth.   Then one can do circuit and system analysis on noise 

added by that component at the output port by translating it back to the input port.  In the language 

of linear system theory, the output and input ports are connected by the system transfer function 

HX(f), so the power spectrum referenced back to the input (reference) port becomes 
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Because the different Gaussian mechanisms are statistically independent, the total noise at 

the reference point can be written as the uncorrelated sum 
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As in any RF system, it is the signal-to-noise ratio after detection that matters most.  And 

there is always several components between the sensor input and the detector that mask the signal 

by an amount that depends on the gain “ahead” of the component.  This leads to a figure of merit 

that combines the noise contribution and gain together.  It is called the noise figure (or factor)  
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In other words, the noise figure quantifies the degradation in SNR as a signal passes through a 

component in a linear chain.  It can be combined with the other noise figures in the chain to get  
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where Gi is the power gain of the ith element.   Note that this gain accounts for impedance mismatch 

between elements.  Intuitively, this means that components located further down a chain tend to be 

less important if the earlier components have high gain.  Note that this gain accounts for any 

impedance mismatch between elements, so that when the impedance match is poor the gain will 

suffer too.  Hence, for linear components such as unsaturated amplifiers, we have G(f) ≈ |HX(f)|2 

Physically, the noise figure represents the degree to which the linear component degrades 

the SNR at the input through the introduction of its own noise mechanisms. Since linear 

components generally maintain the statistics of the input noise (i.e., Gaussian noise stays Gaussian), 

the SNR at the output can be no better than the SNR at the input. This means that the noise factor 

can be no less than unity, which is why F generally lies in the range 1 < F < ∞ . Note that noise 

figure, which is more commonly used in systems engineering than noise factor, is just defined by 

NF = 10*log10 (F) 

System engineers love their decibel units, and don’t forget that they almost always refer to relative 

power levels, not signal strength. 

A convenient way to represent the noise figure more intuitively is to assume that the noise at 

input and output are both additive Gaussian. The noise contributed by linear component can then 

be represented as an equivalent fictitous noise temperature TN corresponding to kBTNBNG noise 

power at the output, or kBTNBN at the input. The noise factor is then given by 
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After several cancellations we get the simple result 

F = 1 + TN/T0 

where T0 is the ambient temperature. Decades ago a convention was established of T0 = 290 K – 

an average room temperature around the world. 

As an example, let’s take a modern low-noise amplifier (LNA) which at low enough 

frequency (up to ~6 GHz) can have a noise figure as low as 1.0 dB. And it can provide this noise 

figure under room temperature operation. The corresponding noise factor and temperature are 

given by 
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F = 10NF/10 = 1.26 and TN = 290(F-1) = 290 (1.26-1) = 75.4 K 

On first glance, this might appear to violate the laws of thermodynamics. How can a device 

produce a noise temperature lower than its operating temperature ? Fortunately, there is no violation 

of thermodynamics because the amplifier is categorically not in thermodynamic equilibrium. This is 

why it can have gain ! And so consistent with definition, the noise temperature is a fictitious 

measure of just how “clean” this gain is. It is also the reason so many RF and THz engineers work 

on amplifiers and worry so much about noise figure. Quoting an old systems engineer, “gain is a 

wonderful thing.” 

 
More General Sensitivity Metrics 

 
Unfortunately, the noise factor concept is not applicable or particularly useful to all 

components or THz systems since it presupposes linearity. As we shall see shortly, there are very 

good reasons to use nonlinear elements in RF and THz systems, not the least of which is the fact 

that the extraction of information from or making a decision based on the incoming radiation 

ultimately requires power or energy detection. And we know from simple circuit theory that 

measurement of power or energy is inherently a nonlinear process, usually quadratic in the signal 

levels. Hence, it is the SNR at the point of detection or decision that is generally the most 

important quantity in system performance. And because of reasons discussed later in statistical 

detection theory, generally this SNR must generally be greater than or equal to unity to have a 

reliable detection or decision. Therefore, a very useful metric for sensor performance is to fix the 

“after detection” SNR , SNRAD , at unity and then solve for the signal power at the input to the 

system sensor that achieves this. The resulting metric is the noise-equivalent power spectral 

density, NEP, which most simply put, is the input signal power to the sensor required to achieve a 

SNR of unity at the output. 

A simple example may be helpful at this point. Suppose we have an ideal “square-law” 

detector, which we will address in more detail later because of its great utility in RF and THz 

systems both. A good and very old example is the Schottky-diode rectifier. By definition, the 

square- law detector has a circuit transfer function of 

Xout = ℜX Pin 

where Xout is the output signal (usually current or voltage), Pin is the input power, and ℜX is the 

“responsivity”. The noise at the output of the detector is minimally given by the Nyquist 
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generalized theorem, which for a Schottky rectifier is 

PN ∝ <(∆I)2> = 4kBT0Re{YD}∆f ≈ 4kBT0∆f / RD 

where ∆f is the post-detection bandwidth. The corresponding signal power at the output is just 

(Xout)2 , so that the output SNR (with X chosen as I) is 

SNRAD = (ℜI Pin)2/4kBT0∆f / RD 

 

Setting this SNR to unity and solving for Pin, we get NEPAD = (4kBT0∆f/ RD )1/2/ℜI 

For the purpose of comparing different sensor technologies, it is conventional to divide out 

the post-detection bandwidth effect (or equivalently, setting it equal to 1 Hz). This yields the 

normalized NEPAD [in units of W/(Hz)1/2 ], given by 

fNEPNEP ADAD ∆= /1'
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As a useful example, we consider a garden variety Schottky diode used in RF and THz 

rectification and detection. For reasons having to do with the solid-state physics of Schottky 

barriers, we find ℜI ≈ 25 A/W or less. And at room temperature, RD ~ 1 KΩ. Choosing these 

values, we get NEP’AD ≈ 1.6x10-13 W/(Hz)1/2 – an excellent sensitivity not ever achieved in 

practice because of power coupling. With a differential resistance of 1 KW, the power delivery to 

the device is not very efficient because of impedance mismatch. And this problem is pervasive in 

the THz region where getting adequate device speed and good impedance matching are very 

difficult to achieve together. So we introduce an external power coupling factor, η, analogous to 

the external coupling efficiency in photonic devices and define it by 

Pabs = η Pinc 
where Pinc is the power incident on the device (or equivalently, the “available” power). Then the 

NEP is re-calculated for the incident power that achieves a SNR of unity, or 

NEP’AD = (4kBT0/RD)1/2/(ηℜI) 

For the 1 KΩ Schottky diode, we expect η ≈ (1 – R) where R is the power reflection coefficient R 

= [(1000 - RA)/(1000+RA)]2, where RA is the a antenna resistance. Choosing a typical value of RA = 

100 Ω, we get R = 0.67, η = 0.33 and NEP’AD ≈ 5x10-13 W/Hz1/2 – a value that has been achieved at 

microwaves, but not yet at THz frequencies because the η is even lower than 0.33 largely because 

of reactive impedance mismatch that we have ignored. Nevertheless, this example should be 

illuminating to students trying to understand NEP - one of the most bewildering of all system 

metrics. 
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We deduce the generic expression for a square- law detector including the external power 

coupling factor: 

NEP’AD = (<(∆X)2>/∆f)1/2/(ηℜX) 

Although simple looking, there is a lot of interesting physics buried in this expression ! 

A useful feature of the NEP is its additivity. If there are N mechanisms contributing to the 

noise at a given node in the receiver, if the mechanisms are uncorrelated to the signal and to each 

other, if they obey Gaussian statistics, then the total NEP is the uncorrelated sum 
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This property applies to any node, pre- or post-detection, and will be used explicitly when we 

discuss the contribution from electronic noise. In reality there are cases where a noise mechanism 

is correlated to the signal (e.g., radiation noise) or to another noise mechanism (current and voltage 

noise in transistors), so one must be careful in applying this addition formula. In such cases, one 

can always fall back on the SNR as a useful measure of overall system performance. 

 
Noise Equivalent Delta Temperature 

 
For radiometric and thermal imaging systems, it is sometimes convenient to express the 

sensitivity in terms of the change of temperature of a thermal source at the input that produces a 

post-detection SNR of unity. The resulting metric is the noise equivalent delta temperature, or 

NE∆T, which is given by 

BPinc

AD

dTdP
NEP

TNE
|/

=∆    or    
BPinc

AD

dTdP
NEP

TNE
|/

'
'

=∆  

where Pinc is the incident power. We assume that the receiver accepts just one spatial mode with 

power coupling η, and that the thermal source satisfies the Rayleigh-Jeans limit and fills the field-

of-view of the sensor. In this case, Pinc = kBTB ∆ν and Pabs= ηkBTB ∆ν so the NE∆T becomes 
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where ∆ν is the spectral bandwidth, not to be confused with the electrical bandwidth ∆f. 
 

 


