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Heterodyne and Homodyne Conversion 

 

Background 

 The heterodyne technique goes back to the early days of radio (World War I) when 

amplifiers were in their infancy and all made from vacuum tubes, meaning that it was difficult to 

boost the amplitude of incoming signals, even at the ~1 MHz or lower carrier frequencies that 

were being used at that time.1  Taken from two Greek roots, “hetero” ≡ “different”, and  “dyne” ≡  

“force”, the basic idea is to couple the  incoming signal to a nonlinear “mixer” that is 

simultaneously driven by a “local oscillator” (LO), thereby creating a beat note at an intermediate 

frequency (IF) between the incoming signal and baseband.  In the early days, baseband was often 

just the human audible range since the information being transmitted was imposed by a human 

voice.   So the IF band was usually in the “supersonic” region between ~20 KHz (approximate 

upper end of audible range) and 1000 KHz, leading to the descriptor “supersonic heterodyne” or 

super heterodyne for short.  Today, superheterodyne continues to be the descriptor, even when the 

incoming radiation is in the THz region, and the IF band is in the UHF or microwave regions, 

typically between 0.1 and 10 GHz.   Arguably, super heterodyne has been one of the most 

valuable, if not the most valuable, developments in the history of communications, RF sensors, 

and more recently THz systems. 

Operational Principles 

The heterodyne technique generally utilizes a three-port nonlinear device called a mixer.   The 

incoming signal XIN is coupled to one port, and the local oscillator XLO to a second port.   The 

output XOUT is taken from the third (intermediate frequency) port.   
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The mixer design and the amplitude of the LO are chosen to impart on XOUT a beat note at the 

intermediate frequency through product terms of the form    

0out in LX X X=  

A quadratic or “square law” term in the mixer transfer function is an effective way to do this: 

Xout = AXin
2  

                                                 
1 for a fascinating story behind the roots of the heterodyne technique, see Wikipedia entry 
http://en.wikipedia.org/wiki/Superheterodyne.  This is in large part the personal story of the creative genius, 
Edwin Armstrong, who later invented and developed FM radio in the 1930s. 
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To see how the beat note is created, we assume coherent input and LO waveforms with a arbitrary 

phase difference, φ :2 
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The first two terms (with prefactors B2/2 and C2/2, respectively) represent the “self-mixing” of 

the LO and input waveforms, respectively, with a dc term and second harmonic for each.   

Generally, the output power is filtered so that neither 2ωin or 2ωLO couple out. There are two 

product terms with frequencies, ωLO – ωin, and ωLO + ωin respectively.  Only the former occurs at 

an intermediate frequency (ωIF = |ωLO – ωin |) between the input band and baseband (assumed to 

be near dc).   In most heterodyne applications, especially THz ones, ωin is relatively close to ωLO , 

so that the second product term will generally not couple through the output (IF) port.  So the 

output signal simplifies to 
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           ≡ ηℜ{Pin + PLO +2(PinPLO)1/2 cos [(ωLO – ωin)t – φ]}  (3) 

where η is the fraction of input signal and LO powers usefully absorbed.  Eqns (2) and (3) 

illustrate three very important aspects of heterodyne conversion that are critical to its success in 

RF and THz systems alike: (1) Xout depends linearly on the input amplitude B, (2) the phase 

factor φ is preserved in the process, and (3) when C >> B as is generally the case, the LO 

effective amplifies the signal compared to what it would be without the heterodyne effect.  The 

first two aspects are tantamount to “linearity”, and the last one gives heterodyne a distinct 

advantage in sensitivity over “direct detection” (i.e., rectification) when amplifiers are not 

available at the input frequency. 

 One complexity of heterodyne conversion is that two possible input frequencies can 

generate the same ωIF : (1) ωin = ωLO + ωIF, and (2) ωin = ωLO - ωIF .  In the first case, the input is 

part of an “upper sideband”, and in the second case it is part of a “lower sideband”, both relative 

to ωLO..  Heterodyne is usually implemented for “single-sideband” conversion, meaning that the 

                                                 
2 Note: this is fundamentally different than an analog multiplier.  The quadratic term of the mixer sums and 
then squares, whereas an ideal multiplier just takes the product. 
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input signal consists of an upper sideband, a lower sideband, but not both.  In this case, any 

unwanted signals, as well as background noise, lying in the opposite sideband (commonly called 

the “image” band) can be down-converted along with the desired signal.  Special types of mixers 

can be constructed that, by phase cancellation techniques, down-convert one sideband but not the 

other.  Such “image rejection” mixers are quite common at microwave and even millimeter-wave 

frequencies, but have not yet appeared at THz frequencies because of their added circuit 

complexity. 

Average Output Power 

In the heterodyne case with the input power all contained in a single sideband, we 

compute the IF output power by taking a long time average compared to the ωIF period: 

2)( outout XDP ⋅= =Dη2ℜ2 ·2 Pin PLO
   (4) 

where D is a matching factor between the mixer and the IF impedance [the cos2(ωIFt) term 

averages to ½].  For practical reasons, it is easier to combine all the mixer parameters into one 

quantity, the mixer conversion gain: 

Gmix = 2Dη2ℜ2 PLO 

so that      Pout = Gmix Pin  

Gmix represents the fraction of absorbed incident power in one sideband that is converted to IF 

power.  In other words, it is an easily measurable quantity that doesn’t require knowing the 

detailed behavior of the mixer itself.  Usually Gmix < 1, but at microwave frequencies there are 

“active” mixers that have Gmix > 1.    Such mixers have not yet appeared at THz frequencies, at 

least not with room-temperature operation.   For a mixer made of passive components, such as 

Schottky diodes, and assuming single-sideband conversion, it can be shown (HW Problem) that 

the highest possible conversion gain is Gmix = 0.5 (-3 dB).  This can be understood physically 

from Eqns (1) whereby the input power is divided equally between the sum and difference 

frequencies (ωLO - ωin , and ωLO + ωin), and the sum term is generally never used. 

In the special case that ωin = ωLO, we still get frequency down-conversion but ωIF 

degenerates to 0 (i.e., “dc”).  This is called “homodyne” conversion.   In going from Eqn (3) to 

Eqn (4), the time-average has no effect on the dc term so an extra factor of two appears in the 

output power: 

Pout = Dη2ℜ2 ·4 Pin PLO  = 2Gmix Pin 

Gmix retains its single-sideband-to-IF definition.  So the factor-of-two increase in power can be 

attributed to the coincidence of the upper- and lower-sideband that only occurs in homodyne 

conversion. 
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Signal-to-Noise Ratio 

(1) Quantum-Limit  

The fluctuations in Xout caused by quantum-mechanical variations in the self-mixing terms Pin and 

PLO must be considered.  This is the so-called photon “shot-noise” effect, which is very 

commonly seen in infrared and visible photoelectric mixers and detectors, but rarely observed in 

THz mixers except those operating at cryogenic temperatures.  Nevertheless, we include it in the 

analysis since it comprises the ultimate quantum-mechanical limit on the sensitivity of any mixer.  

The quadratic term in the mixer transfer characteristic that creates the dc terms in Eqns (1) and 

(2) leads to the following expression for output (IF port) fluctuations caused by input (input or 

LO) fluctuations: 

<(∆Xout)2> = 2ℜ2 <(∆P)2> BIF/∆ν 

Where ∆ν is the input bandwidth and BIF is the IF bandwidth.  In almost all mixers, PLO >> Pin  so 

that ∆P ≈ ∆PLO .  Then, if the LO is a sinusoidal oscillator (generally true at THz frequencies), we 

have <(∆P)2> = ηhνLOPLO ∆ν from the quantum mechanical theory of a “coherent state.”  This 

leads to 

<(∆Xout)2> = 2ℜ2 ηhνLOPLOBIF 

The mean-square fluctuations in output power are 

<(∆Pout )2> = 2Dηℜ2 hνLOPLOBIF ≡ Gmix η hνLO BIF 

Taking the ratios between average signal power and the noise power, we can compute the 

SNR for the quantum-noise-limited heterodyne and homodyne cases in the IF port just after the 

mixer: 
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These both represent fundamental limits on the SNR of any mixer, at least one with a sinusoidal 

local oscillator waveform.  Although a mixer does not carry out “detection” as we have learned it, 

one can still define a (quantum-limited) noise equivalent power (NEP) for the IF port by setting 

the SNR to unity: 

Heterodyne:    NEP  = hνLO BIF/η 
 
Or by normalizing out the IF bandwidth: 
     NEP’ =  hνLO/η 
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This should look familiar to students familiar with photonic receivers.  The same expression 

occurs there for a “photon-shot-noise” limited optical receiver and for the same physical reason: 

that even sinusoidal oscillators such as lasers exhibit a fluctuation in power associated with 

quantum mechanical fluctuations in the photon arrival rate.  The big difference between the THz 

quantum limit and the photonic one is the much smaller magnitude of hν, which makes the 

quantum-limited NEP practically unattainable at THz frequencies, at least at room temperature. 

   

(2) Electrical-Noise Limit 

 In all room-temperature THz mixers developed to date, the signal-to-noise ratio is farl 

lower than the values predicted above because the output fluctuations are dominated by thermal 

and shot noise effects in the mixer itself, and in the electronics before and after the mixer.  On 

first thought, this might seem like a complicated situation and very specific to the mixer type and 

the surrounding electronics.  However, we harken back to key issue discussed earlier that if the 

input (signal) power is much less than the LO power, as is generally the case, then the mixer 

behaves linearly with respect to signal amplitude and phase.  And therefore, we can invoke the 

concepts of noise factor, noise temperature, and noise figure.  We recall the general definition 

addressed in Notes#7, but now applied to the mixer: 
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where TN becomes the mixer noise temperature and G is the single-sideband mixer conversion 

gain.  As before, this leads to the noise factor 

F = 1 + TN/T0 

In general, we expect TN for mixers to be rather high compared to high-quality amplifiers because 

(passive) mixers generally display G < 1, and in the THz region G << 1.  To understand this 

better, we define an excess noise factor τ to describe the noise contributed by the mixer at the 

output in excess of the noise one would expect in thermal equilibrium at T0 (according to the 

Nyquist generalized theorem).  In thermal equilibrium, the noise should just be the input 

reference noise kBT0BN (since the mixer is passive), so that the excess should be written (τ - 

Gmix)kBT0BN .  We thus the noise factor as 
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By definition, the mixer noise temperature is then 

    TN,mix = (F – 1) T0 = (τ/Gmix – 1)T0 
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Typically the excess noise factor is at least τ = 2 for mixers since they usually generate shot noise 

(associated with dc current induced by the LO power attenuation) in addition to thermal noise, 

and Gmix around 1.0 THz is about 0.25 (-6 dB) at best.   So a ballpark estimate of the noise factor 

is F = 8 (NF = 9.0 dB), and TN,mix is 7*290 = 2030 K.  As we shall see, this is about as good as 

room-temperature mixers ever get at these frequencies. 

 

Typical THz Superheterodyne Front End 

In the THz region, there are still no commercially available low-noise amplifiers.  So 

most heterodyne receivers are constructed as shown below where the only component separating 

the mixer from the antenna might be a bandpass filter to block infrared or visible radiation.  The 

LO is usually at a fixed frequency, phase- or frequency-locked.  The IF amp/filter is fixed and is 

designed to have sharp cutoffs, which allows for high rejection of all other signals except for the 

desired signal.  By splitting the effort of amplification and high rejection, the IF filter and 

amplifier are individually much easier to design.   A key point is that the linearity of the mixer 

and single-sideband operation means that there is a simple translation in frequency space between 

the IF passband and the THz (i.e., “RF”) passband.  So the THz passband is centered at νLO +/- 

ν IF,0  , where νIF,0 is the center of the IF passband, the + corresponds to upper-sideband operation, 

and the – corresponds to lower-sideband operation.  Furthermore, the THx bandwidth ∆ν is equal 

to the IF bandwidth BIF assuming that the latter is well defined by a sharp-skirted filter. 

 

 

 

 

 

 

 

Example.  Suppose we have a mixer whose single-sideband conversion gain is 0.25 (-6 

dB) and whose noise figure NF = 9 dB.  It is followed by an IF bandpass filter and IF amplifier 

whose combined noise figure at the center of the IF band is 3.0 dB.  What is the overall noise 

figure and equivalent noise temperature at the input port of the mixer, assuming it is impedance 

matched at this port ?  (solution worked out in class).  Clue: the key to solving this problem is 
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