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Optimum Pre-Detection Signal Processing 
(the “matched filter” concept) 

 
Maximum Signal-to-Noise Ratio (Intuitive Derivation) 

 
• Intuitively, detection in the presence of noise has limits imposed by physics (especially 

thermodynamics).  To understand these limits, suppose we are attempting to detect the RF 
pulse plotted in Fig. 1 of waveform x(t) = Axsin(ωt + φ), carrier frequency ω = 2πν, and 
pulse duration TP .  

• Assume that we are trying to detect this pulse in the presence of AWGN having power 
spectral density SP such that <(∆P)2> = SP ∆ν.   In this case, the RF signal-to-noise ratio is 

( )
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Where UP is the electrical pulse energy.  If we assume that the pulse is sampled consistent 
with the Nyquist condition, then the sample rate fS should be matched to the pulse width 
 

fs = 1/TP,       (2) 
 

     and should be twice the  twice the RF instantaneous bandwidth  
 

fS = 2∆ν .     (3) 
 

     Substitution of these last two into the SNR expression yields 
 

( )max
0

2 2p p

P

U U
SNR

S N
≈ ≡     (4) 

 
where N0 is another way of writing the power spectral density (following the convention in 
communications theory).  This is a factor of two higher than might be expected intuitively 
because it assumes implicitly that we have precise knowledge of the phase and amplitude of 
a signal, not just one or the other. 
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Fig. 1. 
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Maximum Signal-to-Noise Ratio (Rigorous Derivation) 
 

A. Signal  
 
 As in the analysis of RF “detection” in the previous section, there are intuitive ways to 
derive important theorems in RF sensors, and there are more rigorous ways.  This Professor 
believes students should see both because the intuitive ways are the ones easiest to remember 
and extend (at least qualitatively) to other concepts, but the rigorous ways are more precise and 
necessary in real systems engineering.   
 On the subject of optimum signal-to-noise ratio, the rigorous technique is based on 
methods of linear signal processing.  We start by assuming the RF “front-end” of the receiver is a 
linear network having a known system transfer function H(ω) and impulse response function h(t) 
related by 

( )1H ( ) = 
2

j th t e dtωω
π

∞ −

−∞∫      (5) 

 
For a given signal x(t) at the input or output, waveform is related to the Fourier amplitudes X(ω) 
of the power spectral density by the Fourier transform pair 
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Linear systems theory teaches us that the input and output Fourier amplitudes are related by 
 

( ) ( ) ( )out inX X Hω ω ω= ⋅     (7) 
Combining the last two  

( ) ( ) ( ) ( )1 1
2 2
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But by the convolution theorem, the Fourier transform of the product equals the convolution of 
the Fourier transform pairs: 

    

( ) ( ) ( )out inx t x t h dτ τ τ
∞

−∞
= −∫     (9) 

 
In general t can be defined for any time -∞ < t < ∞.  Here, we want to specify t to a sampling 
time tS related to the sampling frequency by fS = 1/tS .  Hence,  
 

( ) ( ) ( )
0

St
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B. Noise  

 
The assumption of a linear network and AWGN noise allows us to write immediately, 
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( ) ( )
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where the factor ½ assumes H (ω) is two sided (i.e., negative frequencies are allowable). 
and Nv∆ is called the noise bandwidth.  But by Parseval’s theorem, Fourier transform pairs 
are related by 
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so that 
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C. Signal-to-Noise Ratio 

 
Combining the results of the previous two sections, we have 
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But by the famous Schwarz inequality, we can write 
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Equality occurs if and only if 
 

( )( ) in Sh C x tτ τ= ⋅ −      (16) 
This leads to a very useful bound on the SNR of 
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By recognizing the relation ( ) 2

0

St

P in SU x t dτ τ⎡ ⎤= −⎣ ⎦∫ , we get the elegant result (again) 
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D. Matched-filter condition 
 

We now recognize (16),  ( ) ( )in Sh t C x t t= ⋅ − , as the definition of the optimum system 
impulse response function.  As written, it is just the time reversal of the input waveform.  
From linear response theory, we can write the equivalent transfer function 
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where the last step is recognized as phase conjugation.  Eqns (16) and (19) are regarded as 

equivalent descriptions of optimum linear RF signal processing called “matched filtering.”   

Substitution of the “matched-filter” h (t) back in to the system transfer convolution leads to  
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This expression suggests a powerful signal processing strategy: multiply the input signal by a 

time-shifted replica of itself.  This is the basis for correlative signal processing, now commonly 

used in radar and communications receivers alike.   


