Biology from an EE perspective Lecture 10

Transcription in Prokaryotes

Transcription and post transcription processing in Eukaryotes

Rakesh K Lal

Lecture Overview

- Look at transcription
- An important process in all of life
- One gets some feel of the complex transcription machinery with feedback that exists
- Important for understanding modern literature

RNA needed for

- rRNA ribosomal RNA
- tRNA for sequence decoding
- mRNA template RNA for protein synthesis
- [More recently, other forms of RNA such as microRNA and small interfering RNA (siRNA) are thought to regulate gene expression]

Transcription -- Prokaryotes

- Chromosome structure
 - In cytoplasm a single circular chromosome with ribosomes conglomerated (nucleoid) around it
- RNA polymerase
 - One type
- Post transcription processes
 - Coupled transcription and translation
 - No post transcription modification of RNA

Transcription -- Eukaryotes

- Chomosomes
 - One linear DNA molecule
 - DNA in nucleus wound around histone cores forming chromatin
 - Chromatin exits in extended & condensed form with the help of structural scaffold proteins
- RNA polymerase
 - Three types of RNA polymerase
- Post transcription processing
 - Capped, spliced (because lengthy introns need to be removed and exons ligated) & adenylated

Gene structure

- Prokaryotes
 - Recognition region 50 bp
 - Transcription initiation site
 - 5' untranslated region
 - Translation initiation
 - Coding region
 - 3' untranslated region
 - Transcription stop site

- Eukaryotes
 - Recognition region 50kbp
 - Transcription initiation site
 - 5' UTR untranslated region
 - Translation initiation
 - Splice donor acceptor site
 - Translation stop
 - 3' UTR
 - Polyadenylation signal
 - Transcription stop site

Partial architecture of a gene

Transcription in prokaryotes -1

- RNA polymerase + σ factors samples DNA by weakly binding and unbinding from the DNA
- At a site where there is a promoter, binds more strongly
- DNA melted and transcription begun, σ factors released
- About 10-12 nucleotide chain hydrogen bonded to the DNA
- The remaining RNA strand unbonded

Transcription in prokaryotes -1

- Translation could begin while transcription still on
- Transcription stops at the stop encoded site
- But for some exceptions, transcription could be with template genes in either strand

Initiation site

- Pribnow box
- TATTAT sequence
- 5-8 nucleotides
- Start nucleotide +1
- Upstream sites -ve
- Initiation site conserved

How does the molecular machinery look?

Transcription control

- Structural genes: transcribed all the time at a slow rate
 - For membrane or other proteins and RNA needed for homeostatis
 - RNA degraded with time
- Regulatory genes: transcribed in response to an event/stimulus
 - In response to a stimuli for a required protein

Regulatory genes

- Encode regulatory proteins
 - Positive and negative control
 - Repressors: Activity reduced by binding to operator site (close to promoter)
 - Co-repressors: Binds with repressor and inhibits transcription
 - Effectors: Induces decreased binding affinity
 - Activators bind near promoter site and increase affinity of RNA polymerase binding to DNA
 - Sometimes both
 - Regulatory proteins are dimers have alpha helices that fit into major grove of DNA

Termination of transcription

- Rho dependent
- Rho independent

Transcription in Eukaryotes -1

Gene needs to be on for transcription

Transcription in Eukaryotes -2

Histone deacetylation leads to more positive charge on histones & DNA wraps more tightly blocking access of transcription factors

Activators increase acetylation & enable access of promotors

Mediators ---

RNA polymerase complex

Opening condensed chromatin – SWI5 activates transcription of genes

GCN5 acetylates histones -1

GCN5 acetylates histones -2

SBF a transcription factor attaches

Mediator attaches

Preinitiation complex forms & RNA polymerization begins

How things line up

Post transcriptional processes

Cis splicing

Cleaving at poly-A site

Cleaving -1

Cleaving -2

Polyadenylation -1

Polyadenylation -2

Splicing

Spliceosome action -1

cis splicing, i.e. intron excised exons spliced from the same strand

Spliceosome action -2

Spliceosome action -3

Sketch of core spliceosome structure

Summary

- In prokaryotes transcription and translation could occur concurrently
- In eukaryotes, transcription and translation in two different locations with an intervening process that excises introns and spices exons this gives additional possibilities for protein synthesis (alternative splicing)
- Also regulation of expression more complex for exons, because gene might be in an inactive condensed state