Biology from an EE perspective Lecture 6

Protein Synthesis

Discuss processes that effect

DNA → mRNA→ protein

Rakesh K Lal

Lecture Overview

- Look at protein synthesis
- This is an core element of what biologists call the central dogma (I prefer to call it the central principle)
- An important set of processes for all forms of life
- One gets some feel of the complex & accurate synthesis machinery with feedback that exists
- Important for understanding modern literature

The Central Dogma (Principle)

- DNA-->RNA-->protein
- DNA-->DNA
- In a mammalian cell about1 million peptide bondsformed per sec
- The basic protein synthesis molecular mechanism has many similarities across all species

Cell cycle

Note major protein synthesis during two phases in the cell cycle:

- (a) Prior to cell division, and
- (b) During growth and homeostatis phase

One would expect similarities and differences in the proteins being expressed in the two phases

Salvage synthesis widely used for DNA, RNA & proteins

Protein synthesis – a bird's eye view

Does it help to not have protein synthesized directly?

- Cell is able to isolate DNA from many enzymes in the cell
- One DNA can serve as template for many mRNA copies – so protein synthesis rate can be modified
- Possibly different segments of the DNA can be used for simultaneous transcription
- RNA requires lower energy for degradation

DNA – two representations

Explain 3' & 5' ends

DNA - cartoon

- Carries genetic code for development & function
- Two strands entwined in a
 helical fashion with hydrogen
 bonds between adenine (A)
 and thymine (T) & guanine (G)
 & cytosine (C)
- Strands un-entwined for copying

RNA

- RNA has several important roles to play in DNA replication and protein expression processes
 - Acts as a messenger (mRNA)
 - Helps to decode the codon (tRNA)
 - Acts as primer to start polymerization in DNA synthesis
 - Short RNA segments called microRNA regulate post transcriptional mRNA

Some comparison between DNA & RNA

- The deoxyribose is replaced by ribose
- Uracil is the pyrimidine in place of thyamine & it hydrogen bonds with adenosine (so one has A-U bonds rather than A-T bonds via hydrogen bonding (two hydrogen bonds again))
- Doesn't form stable double helix
- However hydrogen bonding can form hairpins and stem loops
- The RNA polymer requires a lower energy for degradation than the DNA polymer – more energy efficient for salvage synthesis

Secondary & tertiary structures

Transcription -1

- Transcription from
 - 3'-5' end of the template
 - 5'->3' end of the strand being synthesized
- How does the process start?
- How does this synthesis done?
- How does it end?

Transcription -2

- Process begins at a promoter
- Only one strand transcribed
- Process catalyzed by RNA polymerase after is binds to the dsDNA
- Polymerization proceeds till the stop site

Transcription control

Will do this in more detail when we look at RNA & DNA synthesis in more detail

How process initiated

Again expression control for later

- The amino acid protein sequence stored as a sequence and coding in sets of three nucleotides – the minimum needed to code for 20 amino acids using four nucleotides for coding
- mRNA carries the sequence information as trinucleotide codes called codons
- These codons are decoded at the time of protein synthesis

- A codon set of 3 nucleotides could code for 64 amino acids however only twenty are coded for
- So there is a degeneracy, i.e. more than one code corresponds to one amino acid
- •How is first codon identified? And how is a sequence terminated?
- AUG is a codon for methionine and is also the "start" codon
- •UAA, UAG and UGA do not code for any specific amino acid but act a "stop" codons
- Therefore there are 61 codons that code for amino acids

First Position (5' end)					Third Position (3' end)	
	Second Position					
	U	C	Α	G		
	Phe Phe	Ser Ser	Tyr Tyr	Cys Cys	U C	
U						
	Leu Leu	Ser Ser	Stop Stop	Stop Trp	A G	
	Leu Leu	Pro Pro	His His	Arg Arg	U C	
С						
	Leu Leu (Met)*	Pro Pro	Gln Gln	Arg Arg	A G	
	Ile Ile	Thr Thr	Asn Asn	Ser Ser	U C	
A						
	Ile Met (start)	Thr Thr	Lys Lys	Arg Arg	A G	
	Val Val	Ala Ala	Asp Asp	Gly Gly	U C	
G						
	Val Val (Met)*	Ala Ala	Glu Glu	Gly Gly	6	<mark>o</mark> dons onserved
	mon initiator codon; GUG			cine, but, rarely,		
these codons can also c	code for methionine to init	iate a protein chain.			a	cross sp

TABLE 4-2 Known Deviations from the Universal Genetic Code

Codon	Universal Code	Unusual Code*	Occurrence
UGA	Stop	Trp	Mycoplasma, Spiroplasma, mitochondria of many species
CUG	Leu	Thr	Mitochondria in yeasts
UAA, UAG	Stop	Gln	Acetabularia, Tetrahymena, Paramecium, etc.
UGA	Stop	Cys	Euplotes

^{*&}quot;Unusual code" is used in nuclear genes of the listed organisms and in mitochondrial genes as indicated. SOURCE: S. Osawa et al., 1992, *Microbiol. Rev.* **56**:229.

Codon needs to be translated -- how?

- mRNA acts as the messenger template carrying the code for the protein to be synthesized
- The translation is done in ribosomes in which tRNA decode the sequence and attach the appropriate amino acid

Ribosomes

After ribosome attachment around mRNA, tRNA with complementary anticodon & appropriate amino acid attached attach and the next amino acid in peptide is fused

tRNA

Codon deocded by base pairing interactions of codon in the mRNA with anti-codons in tRNA

tRNA

Note the anti-codon is a three dimensional surface – this enables more functional flexibility in codon recognition

tRNA & wobble

- How the degenerate code is mapped use of wobble reduces the need to have 61 different tRNA sets
- The third base in the codon and the first in the anticodon are called the wobble position and G,U & I enable more than one base to be recognized in the wobble position in the codon

as a "don't care" recognition site

Ribosome complexity

How do we know there are these parts?

Ribosome attachment process

Ribosome attachment

Ribosome complete attachment

Translation process -1

Translation -2

Translation -3

Translation -4

Ribosome detachment

tRNA synthesis

[matched attachment codon-amino acid via tRNA synthetase]

Quick mention of DNA replication

- Replication a more complex process than transcription
- Replication begins at replication bubbles and moves through the genome
- Unpacking & packing of DNA important for eukaryotic cells

Replication fork & Okazaki fragments

- Replication always 3'-5' along the template
- Need of a primer and RNA serve as primer and need to be excised
- So the two daughter strands have slightly different mechanisms for formation – the lagging strand forming via a series of short segments that are subsequently joined

Summary

- Protein synthesis & formation essentially via six important sets of molecular machines
 - Transcription of mRNA (or pre-mRNA -- only for eukaryotes)
 - Splicing of pre-mRNA to form mRNA (only eukaryotes)
 - microRNA based regulation
 - Diffusion of mRNA to ribosomes and decoding of codons
 & synthesis of proteins there in
 - Chaperon enabled folding of proteins
 - Packaging and transport of proteins
 - Degradation of malformed proteins and mRNA after use

Summary

- Need to still understand, how is the protein synthesis process triggered?
- How are the appropriate segments identified for transcription?
- How are the transcription and translation processes terminated?