Biology from an EE perspective Lecture 8

Transport of molecules & ions across cell membranes

Membrane potential in electrically active tissue

Electric potential change to muscle contraction

Rakesh K Lal

Lecture Overview

- Continue with looking at molecules that help set up potentials
- Look at other electrically active tissue
- Discuss the mechanisms by which muscles create force

Measuring potential

Neuron structure revisited

Transport across membranes

TABLE 7-1	Mechanisms for Transporting Ions and Small Molecules Across Cell Membranes
-----------	--

	Transport Mechanism				
Property	Passive Diffusion	Facilitated Diffusion	Active Transport	Cotransport*	
Requires specific protein	_	+	+	+	
Solute transported against its gradient	_	_	+	+	
Coupled to ATP hydrolysis	-	_	+	_	
Driven by movement of a cotransported ion down its gradient	_	-	_	+	
Examples of molecules transported	O ₂ , CO ₂ , steroid hormones, many drugs	Glucose and amino acids (uniporters); ions and water (channels)	Ions, small hydrophilic molecules, lipids (ATP- powered pumps)	Glucose and amino acids (symporters); various ions and sucrose (antiporters)	
*Also called secondary active transport.					

lonic concentrations

TABLE 7-2	Typical Intracellular and Ion Concentrations	l Extracellular				
Ion	Cell (mM)	Blood (mM)				
Mammalian Cell (Vertebrate)						
K ⁺	139	4				
Na ⁺	12	145				
Cl-	4	116				
HCO ₃ ⁻	12	29				
X-	138	9				
Mg^{2+}	0.8	1.5				
Ca ²⁺	< 0.0002	1.8				
*The least record of the sould be been saidely used in the dis-						

^{*}The large nerve axon of the squid has been widely used in studies of the mechanism of conduction of electric impulses.

 $^{^{\}dagger}X^{-}$ represents proteins, which have a net negative charge at the neutral pH of blood and cells.

How does the cell maintain potential?

Proteins that enable molecular transport Pumps

Proteins that enable molecular transport Channels

Proteins that enable molecular transport Transporters

Glucose transport

How does one check these things out?

Ion pump

P-class pumps

Plasma membrane of plants, fungi, bacteria (H⁺ pump)

Plasma membrane of higher eukaryotes (Na+/K+ pump)

Apical plasma membrane of mammalian stomach (H⁺/K⁺ pump)

Plasma membrane of all eukaryotic cells (Ca²⁺ pump)

Sarcoplasmic reticulum membrane in muscle cells (Ca²⁺ pump)

Calcium pump

Molecular picture

Proton pumps

V-class proton pumps

Vacuolar membranes in plants, yeast, other fungi

Endosomal and lysosmal membranes in animal cells

Plasma membrane of osteoclasts and some kidney tubule cells

Proton pumps

F-class proton pumps

Bacterial plasma membrane

Inner mitochondrial membrane

Thylakoid membrane of chloroplast

Transport of molecules with hydrophobic and hydrophilic parts

Charge neutrality

Channels

Gated channels

How channel proteins studied

Antiporter

Non-electrically excitable tissue also could have some internal potential

Energy from ionic gradient important in many situations including photosynthesis

Gated channels

Random Telegraph Signals

Ion pumps in other tissue Glucose intake

Ion pumps in other tissue

Gated channels

Gated channels

Schwann cells

Schwann cells

Schwann cells

Types of junctions

Connections

Chemical synapse

Synapse: Electron Image

Transmitters

$$\begin{array}{c} {\rm O} \\ \parallel \\ {\rm CH_3-C-O-CH_2-CH_2-N^+-(CH_3)_3} \end{array}$$

Acetylcholine

Glycine

Glutamate

Dopamine (derived from tyrosine)

Norepinephrine (derived from tyrosine)

$$HO$$
 $CH-CH_2-NH_2^+-CH_3$
 OH

Epinephrine

(derived from tyrosine)

Serotonin, or **5-hydroxytryptamine** (derived from tryptophan)

Histamine

(derived from histidine)

$$H_3N^+$$
— CH_2 — CH_2 — CH_2 — C — C

γ-Aminobutyric acid, or GABA (derived from glutamate)

Neuro-transmitter action

Neurotransmitter action

Vesicle cycle

Summing of synaptic signals

Nervous system to effector organs

Neuron to muscle

Neuron to muscle cell

Types of muscle cells

- Striated
- Cardiac
- Smooth

Cell cytoskeleton

Striated muscle

Striated muscle structure

Structure

Structure sketch

How do muscles contract

- No change of fibril length
- I band width changes

Motor structure

Contraction

Cartoon of muscle cell structure

Basic action

Cartoon of muscle cell

Actin-myosin action

Myosins

TABLE 19-3 Myosins				
Type	Heavy Chain (MW)	Structure	Step Size (nm)	Activity
I	110,000–150,000		10–14	Membrane binding, endocytic vesicles
II	220,000		5–10	Filament sliding
V	170,000–220,000		36	Vesicle transport
VI	140,000		30	Endocytosis
XI	170,000–260,000		35	Cytoplasmic streaming

Summary

- Several types of membrane proteins involved in molecule and ion transport across cell membranes
- Several of them have their conductances modulated by either potential or the attachment of a ligand & serve in modifying the potential setup by other membrane proteins that set up ionic gradients
- Reception a nerve impulse in a muscle cell at a sarcoplasmic reticulum releases calcium ion that causes a sarcomere to shorten as myosin ratchets against actin with energy from ATP