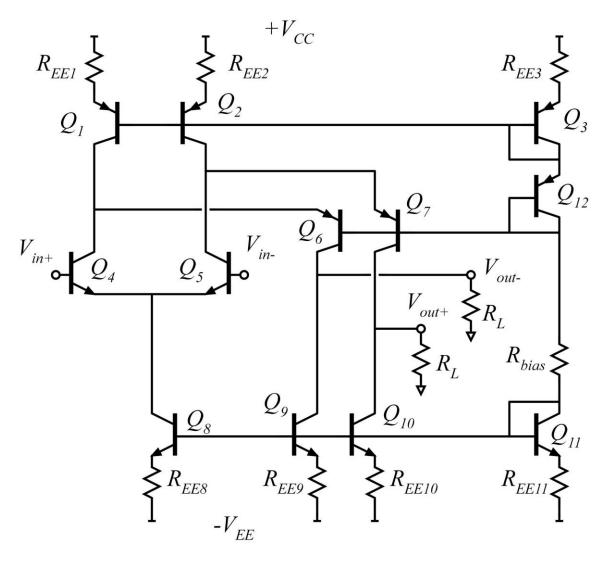
Final Exam, ECE 137A

Wednesday March 19, 2014 7:30-10:30 PM

Name: _____

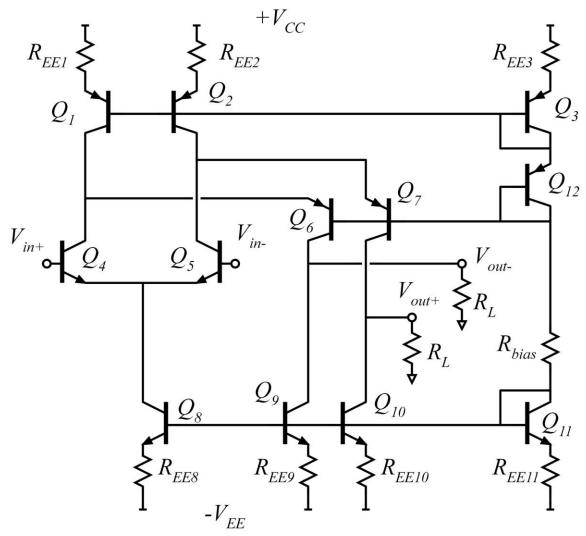
Closed Book Exam: Class Crib-Sheet and 3 pages (6 surfaces) of student notes permitted Do not open this exam until instructed to do so. Use any and all reasonable approximations (5% accuracy), *after stating & justifying them*. *Show your work: Full credit will not be given for correct answers if supporting work is missing.*


Good luck

Time function	LaPlace Transform
$\delta(t)$ impulse	1
U(t) unit step-function	1/s
$e^{-\alpha t}U(t)$	_1
	$s + \alpha$
$e^{-\alpha t}\cos(\omega_d t)U(t)$	$s + \alpha$
	$(s+\alpha)^2 + \omega_d^2$
$e^{-\alpha t}\sin(\omega_d t)U(t)$	$\frac{\omega_d}{(\ldots)^2 \cdots ^2}$
	$(s+\alpha)^2 + \omega_d^2$

Part	Points	Points	Part	Points	Points
	Received	Possible		Received	Possible
1a		5	2c		15
1b		6	2d		10
1c		4	3a		7
1d		10	3b		8
1e		10	3c		7
2a		10	3d		8
2b		10			
total		100			

Problem 1, 35 points


This is an NOT an Op-Amp: Analyze under the assumption that the differential and common mode input voltages are at zero volts

All the transistors have the same (matched) I_s , have $\beta = \infty$, and $V_A = \infty$ Volts. $V_{CE(sat)} = 0.5$ V. V_{be} is roughly 0.7 V, but use $V_{be} = (kT/q)\ln(I_E/I_s)$ when necessary and appropriate. The supplies are +3.3 Volts and -3.3 Volts. The DC voltage drops across Ree3 and Ree11 are both 300mV.

The DC collector currents of Q3,4,5,6,7,11,12 are all 1.0 mA. $R_L = 500\Omega$

Part a, 5 points DC bias:

On the circuit diagram above, label the DC voltages at **ALL nodes**, the DC currents through **ALL resistors**, and the DC drain currents of **all transistors**.

Part b, 6 points DC bias:

Find the value of all resistors.

 Rbias=_____
 Ree1=_____
 Ree2=____
 Ree3=____

 Ree8=_____
 Ree9=_____
 Ree10=_____
 Ree11=_____

Part c, 4 points

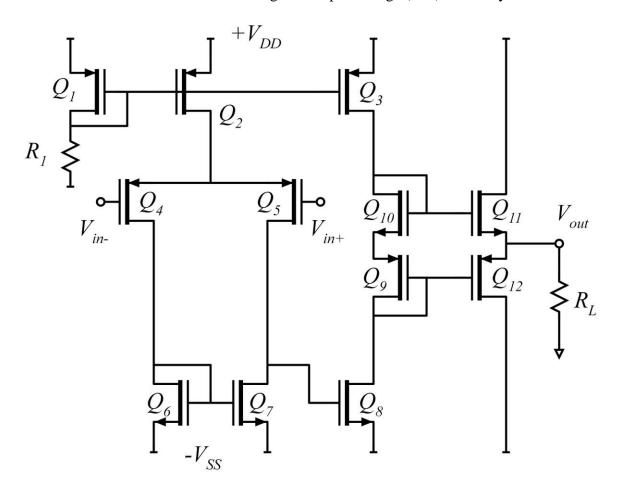
Find the transconductance of the transistors below: gm4=____ gm5=____ gm6=___ gm7=____

Part d, 10 points.

The circuit is fully differential. Assuming a differential input signal, $V_{in,diff} = V_{i+} - V_{i-}$, and defining a differential output signal $V_{out,diff} = V_{0+} - V_{0-}$, compute the differential gain $A_d = V_{out,diff} / V_{in,diff}$

*A*_d =_____

Part e, 10 points


Maximum peak-peak output voltage at the positive output Vo+ (*show all your work*)

	magnitude and sign of maximum output signal swing due to <i>cutoff</i>	magnitude and sign of maximum output signal swing due to <i>saturation</i>
Transistor Q1		
Transistor Q4		
Transistor Q6		
Transistor Q9		

Be warned: In some cases a limit is not relevant at all. Mark those answers "not relevant". But, give a 1-sentence statement below as to why it is not relevant.

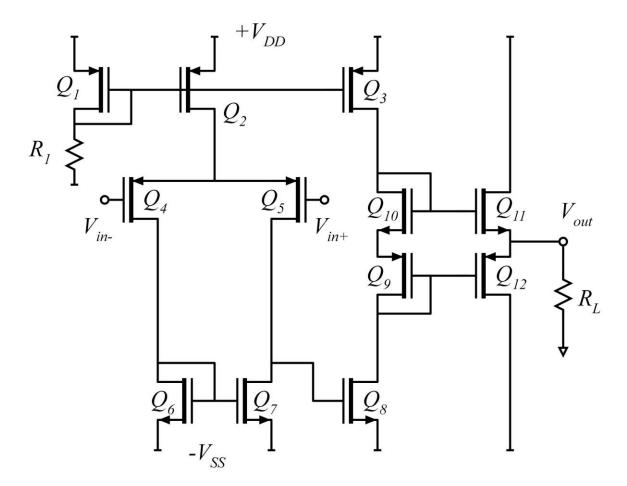
Problem 2, 35 points

This is an Op-Amp---analyze the bias under the assumption that DC output voltage is zero volts, that the positive input Vi+ is zero volts, and that we must determine the DC value of the negative input voltage (Vi-) necessary to obtain this.

All NMOS: $I_D = 1(\text{mA/V})(W_g / 1\mu\text{m})(V_{gs} - V_{th} - \Delta V)(1 + \lambda V_{DS})$ $\Delta V = 0.1\text{V}, V_{th} = 0.2\text{V}, 1/\lambda = 5\text{V}$ All PMOS: Also velocity-limited, with $g_m = 0.5(\text{mA/V})(W_g / 1\mu\text{m})$ $\Delta V = -0.1\text{V}, V_{th} = -0.2\text{V}, 1/\lambda = 5\text{V}$

 $V_{DD} = +1 \text{ V}, -V_{SS} = -1 \text{ V}, \text{ The load resistor is } R_L = 10 \text{ k}\Omega$

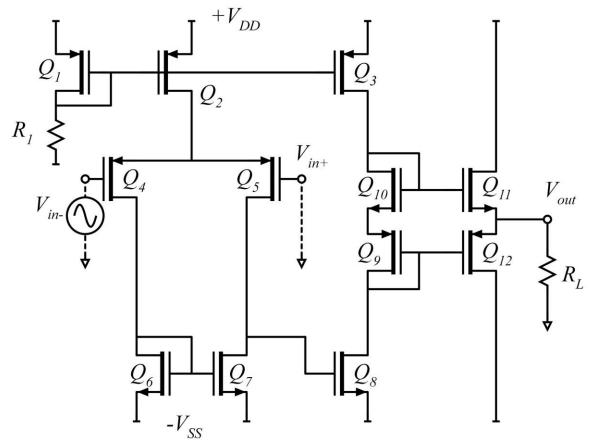
Part a, 10 points DC bias. Approximation: ignore the term $(1 + \lambda V_{DS})$ in DC bias analysis.


Analyze the bias under the assumption that DC output voltage is zero volts, that the positive input Vi+ is zero volts, and that we must determine the DC value of the negative input voltage (Vi-) necessary to obtain this.

Q1 is to be biased at 0.1 mA drain current. The transistor gate widths are as follows

Q1 2µm	•	-	-	Q5 1µm	-	-	-	-	-	-	-
Find:											_
ID1=_		ID2=_		ID3=	I	D4=	IC	05=	IDe	5=	
ID7=_		ID8=_		ID9=	I	D10=	I	D11=_	I	D12=	
R1=											

Part b, 10 points


DC bias

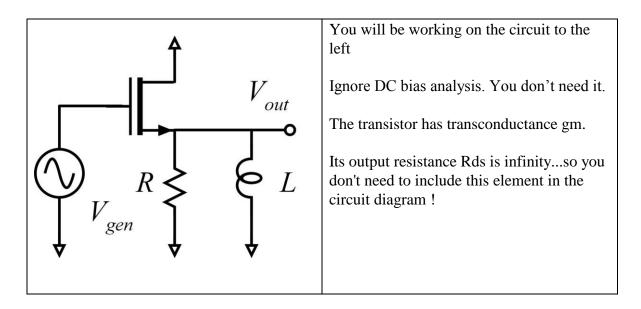
On the circuit diagram above, label the DC voltages at **ALL nodes** and the drain currents of **ALL transistors**

Part c, 15 points.

To compute the op-amp differential gain, we will ground the positive input and apply a signal to the negative input. Assume that the DC bias conditions do not change when we do this.

Find the following

	Voltage Gain	Input impedance
Transistor combination		
Q4,5,6,7		
Transistor Q8		
Transistor combination		
Q11,12		
Overall differential		
Vout/Vin		


Part d, 10 points

Maximum peak-peak output voltage at the positive output Vo+ (*show all your work*) Recall that the FETs are velocity-limited, hence $V_{DS,knee} = \Delta V = 0.1$ V.

	magnitude and sign of maximum output signal swing due to <i>cutoff</i>	magnitude and sign of maximum output signal swing due to: <i>knee voltage</i> (saturation)
Transistor Q3		knee vollage (saturation)
Transistor Q8		
Transistor Q11		
Transistor Q12		

Be warned: in some cases a limit is not relevant. Mark those answers "not relevant". But, give a 1-sentence statement why below.

Problem 3, 30 points

Part a, 7 points

Draw a small-signal equivalent circuit of the circuit.

Part b, 8 points

gm=9 mS. L=1 μ H. R= 1000 Ohms

Find, by nodal analysis, a small-signal expression for Vout/Vin. Be sure to give the answer with **correct units** and in ratio-of-polynomials form, i.e.

$$\frac{V_{out}(s)}{V_{gen}(s)} = K \cdot \frac{1 + b_1 s + b_2 s^2 + \dots}{1 + a_1 s + a_2 s^2 + \dots} \text{ or (as appropriate)} \frac{V_{out}(s)}{V_{gen}(s)} = K \cdot (s\tau)^n \cdot \frac{1 + b_1 s + b_2 s^2 + \dots}{1 + a_1 s + a_2 s^2 + \dots}$$

Note that an expression like

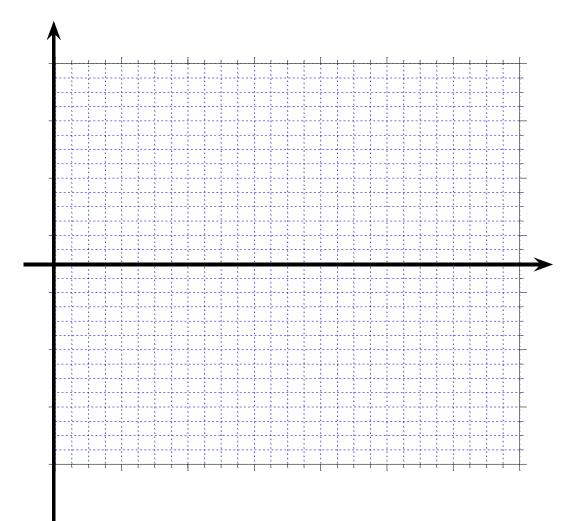
 $\frac{V_{out}(s)}{V_{gen}(s)} = \frac{1}{1 + (3 \cdot 10^{-6})s}$ is dimensionally wrong; $\frac{1}{1 + (3 \cdot 10^{-6} \text{ seconds})s}$ is dimensionally correct

Vout(s)/Vin(s)=_____

Part c, 7 points

Find any/all pole and zero frequencies of the transfer function, in Hz:

Draw a clean Bode Plot of Vout/Vin,


LABEL AXES, LABEL all relevant gains and pole or zero frequencies, Label Slopes

Part d, 8 points

Vin(t) is a 0.1 V amplitude step-function.

Find Vout(t)=_____

Plot it below. Label axes, show initial and final values, show time constants.

