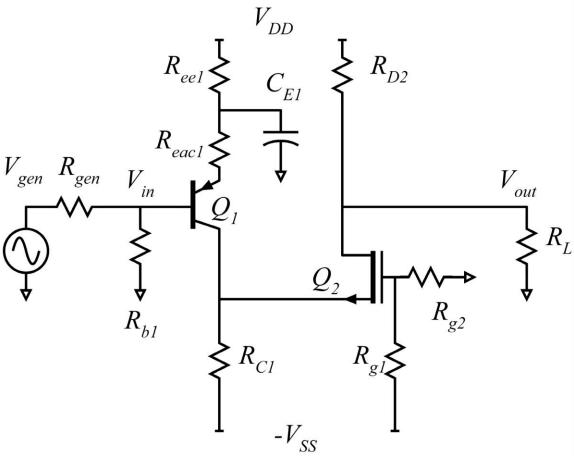
ECE 137 A Mid-Term Exam

Thursday February 6, 2014

Do not open exam until instructed to.

Closed book: Crib sheet and 1 page personal notes permitted

There are 2 problems on this exam, and you have 75 minutes.


Use any and all reasonable approximations (5% accuracy is fine.), AFTER STATING and approximately Justifying them.

Name:		
Maille.		

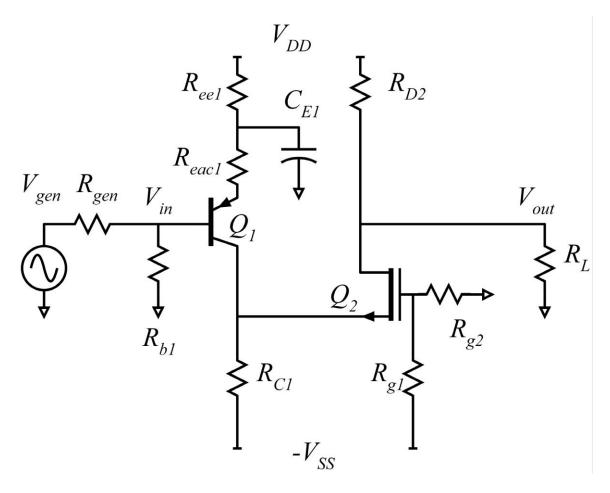
Part	Points	Points
	Received	Possible
1a		7
1b		7
1c		6
1d		15
1e		15
1f		6
1g		14
2a		12
2b		13
2c		5
TOTAL		100

Problem 1, 70 points

You will be working on the circuit below:

Q1: $\beta = 100$, $V_A = 100$ V

Q2: Velocity-limited $V_{th}=0.2V$, $1/\lambda=$ infinity, $\Delta V=L_gv_{th}/\mu=0.1V$, $c_{ox}v_{th}W_g=5$ mA/V


The supplies are +3V and -3V

Rgen=1000 Ohms, RL=10,000 Ohms. Rg2=100kOhms, Reac1=74 Ohms, Rb1=10kOhms Ce1 is very large (AC short-circuit)

Part a, 7 points	
DC bias.	
V_{in} is at (approxiately) zero volts DC.	
The gate of Q2 is to be biased at -1.5 Volts	
The drain is to be biased at zero volts.	
Q1 is to be biased at 1 mA emitter current	
Q2 is to be biased at 2 mA drain currrent.	
Find the following: Rc1= Rg1= Ree	o1=
R \(\text{1} -	

Part b, 7 points

DC bias

On the circuit diagram above, label the DC voltages at \pmb{ALL} nodes and the DC currents through \pmb{ALL} resistors

Part	c,	6	points

Find the s	small sign	al parameters	of () 1	and () 2.

Transistor Q1: gm=_____ Rce=____ Rbe=____

Transistor Q2: gm=_____ Rds=____

Part d, 15 points.

Find the small signal voltage gain	(Vd2/Vs2) of Q2	and Q2's small-signal input
resistance.		

Vd2/Vs2=_____

Rin,q2=_____

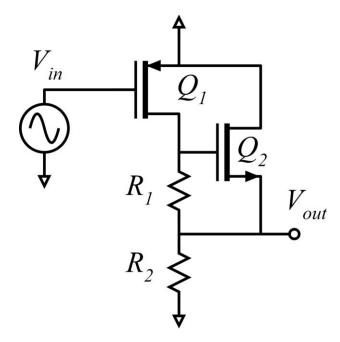
Part e, 15 points

Find the small signal voltage gain (Vc1/Vb1) of Q1 and the	*** amplifier *** input
resistance.	

Vc1/Vb1=_____

Rin,amplifier =

Part f, 6 points
Find (Vout/Vin), (Vin/Vgen) and (Vout/Vgen)
(Vout/Vin) =
(Vin/Vgen) =


(Vout/Vgen) = _____

Part g, 14 points

Now you must find the maximum signal swings. Find the output voltage due saturation and cutoff in Q2. <i>Give the sign</i> (+ or -) in your answers below.	to
Cutoff of Q1; Maximum Δ Vout resulting =	
Saturation of Q1; Maximum ΔVout resulting =	
Cutoff of Q2; Maximum ΔVout resulting =	
Knee voltage of Q2; Maximum ΔVout resulting =	

Problem 2, 30 points

nodal analysis

You will be working on the circuit to the left.

Ignore DC bias analysis. You don't need it.

Transistor 1 has transconductance gm1.

Transistor 2 has transconductance gm2.

The drain-source resistances Rds of both transistors are infinity (so you don't need to draw it!)

Part a, 12 points

Draw the small-signal equivalent circuit

Part b,13 points
Find, by nodal analysis, a small-signal expression for Vout/Vin
Nout/Vin-

D 4		_	• ,
Part	C.)	points

 $gm1{=}\;1\;mS\quad gm2{=}\;10\;mS\quad\text{, }R1{=}1kOhm\text{, }R2{=}2kOhm$ Give a numerical value for Vout/Vin.

Vout/Vin=____