ECE 137 A Mid-Term Exam

Thursday February 5, 2015

Do not open exam until instructed to.

Closed book: Crib sheet and 1 page personal notes permitted

There are 3 problems on this exam, and you have 75 minutes.

Use any and all reasonable approximations (5% accuracy is fine.), AFTER STATING and approximately Justifying them.

Part	Points	Points	Part	Points	Points
	Received	Possible		Received	Possible
1a		10	2f		15
1b		5	3a		8
1c		5	3b		8
1d		10	3c		4
1e		15			
2a		10			
2b		5			
2c		5			
2d		10			
2e		5			
TOTAL					100

Problem 1, 30 points

You will be working on the circuit below:

The transistor has

$$L_g$$
 =45nm, μ =400 cm²/V-s, $\varepsilon_{r,ox}$ =3.8, T_{ox} =1nm, v_{sat} =10⁷cm/s, V_{th} = 0.284V, $1/\lambda$ = 10V,

From which we calculate:

$$c_{ox}v_{sat}$$
 = 3.36 mA/V/ μ m, μc_{ox} / $2L_g$ = 15 mA/V²/ μ m, $\Delta V = L_g v_{th}$ / μ = 0.113V,

The supplies are +1V and -1V

You are to bias the transistor at 1mA drain current,

with 0.5V DC drain voltage, and with -0.35 V DC source voltage.

$$R_{SAC} = 10 \,\Omega$$
, $R_G = 1 \,\mathrm{M}\Omega$, $R_{gen} = 100 \,\mathrm{k}\Omega$, $R_L = 10 \,\mathrm{k}\Omega$

 C_s and C_{out} are very large (AC short-circuit)

Part a, 10 points		
DC bias.		
Use this approximation: Ignore (i.e.	set to zero) the FET	λ parameter in the DC bias
calculation.		
Find the following:		
FET gate width Wg=	Rss=	RD=

Part b, 5 points

DC bias

On the circuit diagram above, label the DC voltages at \pmb{ALL} nodes and the DC currents through \pmb{ALL} resistors

Part c, 5 points	
`	zero) FET λ parameter, find the FET small signal parameters
gm=	Rds=

Part d, 10 points.

Find the small signal voltage gain	Vout/Vin and the amplifier small-signal input
resistance.	

Vout/Vin=____

Rin, amplfier = _____

Problem 2, 50 points

You will be working on the circuit below:

Q1: $\beta = 100$, $V_A = \text{infinity V}$

The supplies are +7.5V and -7.5 V.

You will bias the transistor with 1mA collector current.

The DC collector bias voltage is -4V.

 $R_L \, \text{is} \, 10 \, \text{k}\Omega$, $R_{gen} \, \, \text{is} \, 75 \, \, \Omega$

Part a, 10 points	
DC bias.	
Find the following:	
$R_{FF} = $	$R_C =$

Part b, 5 points

DC bias

On the circuit diagram above, label the DC voltages at **ALL nodes** and the DC currents through **ALL resistors**

Part c, 5 points		
Find the small signal	parameters of Q1.	
gm=	Rce=	Rbe=

Part d, 10 points.

Find the small signal voltage gain	(Vout/Vin) of Q1	and the amplifier	small-signal input
resistance.			

Vout/Vin=____

Rin,amp=_____

Part e, 5 points
Find (Vin/Vgen) and (Vout/Vgen)
(Vin/Vgen) =
(Vout/Vgen) -

Part f, 15 points

Now you must find the m	aximum signal s	swings. Find the	output voltage	due	to
saturation and cutoff in Q	2. Give the sign	(+ <i>or</i> -) <i>in your</i>	answers below.		

Problem 3, 20 points

nodal analysis

You will be working on the circuit to the left.

Ignore DC bias analysis. You don't need it.

Transistor 1 has transconductance gm1. Transistor 2 has transconductance gm2.

The drain-source resistances Rds of both transistors are infinity (so you don't need to draw it!)

Part a, 8 points

Draw the small-signal equivalent circuit

Part b, 8 points
Find, by nodal analysis, a small-signal expression for Vout/Vin.
Vout/Vin-

Part c, 4 points

gm1= 1 mS gm2= 2 mS Give a numerical value for Vout/Vin.

Vout/Vin=____