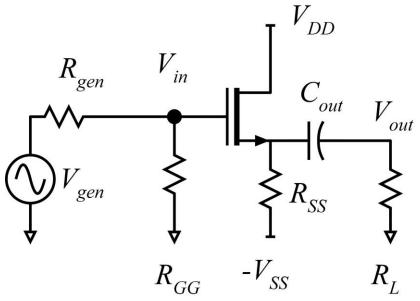
ECE 137 A Mid-Term Exam

Thursday February 9, 2017

Do not open exam until instructed to.

Closed book: Crib sheet and 1 page personal notes permitted

There are 3 problems on this exam, and you have 75 minutes.


Use any and all reasonable approximations (5% accuracy is fine.), AFTER STATING and approximately Justifying them.

Name:			

Part	Points	Points	Part	Points	Points
	Received	Possible		Received	Possible
1a		10	2f		15
1b		5	3a		8
1c		5	3b		8
1d		10	3c		4
1e		15			
2a		10			
2b		5			
2c		5			
2d		10			
2e		5			
TOTAL					100

Problem 1, 30 points

You will be working on the circuit below:

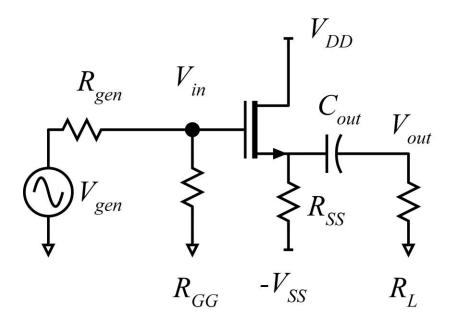
The transistor has

 L_g =22nm, μ =180 cm²/V-s, $\varepsilon_{r,ox}$ =3.8, T_{ox} =1nm, v_{sat} =10⁷cm/s, V_{th} =0.3V, $1/\lambda$ =10V, From which we calculate:

$$c_{ox}v_{sat}\!=\!3.36~\text{mA/V/}\mu\text{m}~,~\mu c_{ox}~/~2L_{g}~=\!13.8~\text{mA/V}^{2}/\mu\text{m}~,~\Delta V=L_{g}v_{th}~/~\mu=\!0.122\text{V},$$

The supplies are +1V and -1V

You are to bias the transistor at 1.5mA drain current, and with -0.40 V DC source voltage.


$$R_{GG}$$
=10 M Ω , R_{gen} =100 k Ω , R_L =1 k Ω

 C_{out} are is very large (AC short-circuit)

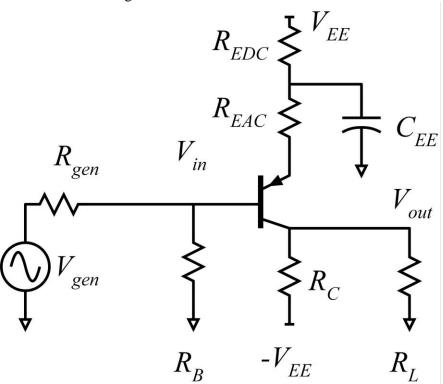
Part a, 10 points	
DC bias.	
Use this approximation: Ignore (i.e	e. set to zero) the FET λ parameter in the DC bias
calculation.	
Find the following:	
FET gate width Wg=	Rss=

Part b, 5 points

DC bias

On the circuit diagram above, label the DC voltages at \pmb{ALL} nodes and the DC currents through \pmb{ALL} resistors

Part c, 5 points	
Using the actual (nor	nzero) FET λ parameter, find the FET small signal parameters
gm=	Rds=


Part d, 10 points.	
Find the small signal voltage gain resistance.	Vout/Vin and the amplifier small-signal input

Vout/Vin=____

Rin, amplfier = _____

Problem 2, 50 points

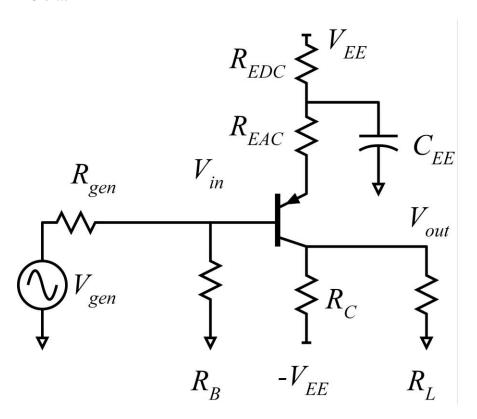
You will be working on the circuit below:

Q1: $\beta = 100$, $V_A = \text{infinity V}$

The supplies are +15V and -15~V.

You will bias the transistor with 2mA collector current.

The DC collector bias voltage is 0V.


 R_L is 1000 Ω , R_{gen} is 100 Ω , R_b is 1 k Ω , R_{EAC} is 25 Ω

 $C_{\!\scriptscriptstyle E\!E}$ is very large. Assume that it is an AC short-circuit.

Part a, 10 points			
DC bias.			
Find the following	ng:		
$R_{\scriptscriptstyle FF} =$	$R_C =$	$R_{\rm cpc} =$	

Part b, 5 points

DC bias

On the circuit diagram above, label the DC voltages at \pmb{ALL} nodes and the DC currents through \pmb{ALL} resistors

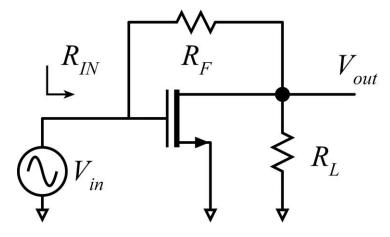
Part c, 5 points			
Find the small s	ignal parameters of Q1.		
am-	\mathbf{p}_{co}	Rhe-	

Part	d,	10	points.

Find the small signal voltage	e gain (Vout/Vin) of Q1	and the amplifier small-signal input
resistance.		

Vout/Vin=____

Rin,amp=____


Part e, 5 points
Find (Vin/Vgen) and (Vout/Vgen)
(Vin/Vgen) =
(Vout/Vgen) =

Part f, 15 points

Now you must f	find the maximum	n signal swings.	Find the	output voltage	due	to
saturation and c	utoff in Q2. Give	the sign (+ or -) in your	answers below.		

Problem 3, 20 points

nodal analysis

You will be working on the circuit to the left.

Ignore DC bias analysis. You don't need it.

The transistor has transconductance gm.

The drain-source resistance Rds of the transistor is infinity (so you don't need to draw it!)

Part a, 8 points

Draw the small-signal equivalent circuit

Part b, 8 points
Find, by nodal analysis, a small-signal expression for Rin
Rin=

Pa	ar	t	c,	4	points

gm= 1 mS , R_L =3kOhm, R_f = 2 kOHm. Give a numerical value for Rin.

Rin=				

16 a