ECE137A, Notes Set 14: Op-Amps

Mark Rodwell, Doluca Family Chair, ECE Department University of California, Santa Barbara rodwell@ece.ucsb.edu

Operational Amplifier

Characteristics of op-amp:
A_{d} is very large. Very large CMRR
Large $R_{\text {in }}$. Small $R_{\text {out }}$

$$
V_{\text {out }}=A_{D}\left(V^{+}-V^{-}\right)
$$

Example of feedback network:

$$
V^{-}=\beta V_{\text {out }} \text { where } \beta=R_{2} /\left(R_{1}+R_{2}\right)
$$

Operational Amplifier with Feedback

Combine these:

where $A_{d}=$ differential gain or open-loop gain, a.k.a. $A_{O L}$
$\beta=$ feedback factor. $A_{C L}=$ closed-loop gain.
$T=$ loop transmission
$\frac{V_{\text {out }}}{V_{\text {in }}}=A_{C L}=\left\{\begin{array}{l}1 / \beta \text { if } T \gg 1 \\ A_{d} \text { if } T \ll 1\end{array}\right.$
If the loop transmission is very large, the closed-loop gain is precisely set by the feedback factor

Negative feedback

Feedback can provide precise control of circuit gain. If $A_{d} \beta$ is large, then the gain is contolled by the feedback resistors

Note that the external feedback components also set the DC bias.
Op-amp bias is almost always set by the feedback network:
For now, analyze by assuming that Vout=0V, and work back to the input to find $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$.

An op-amp is an amplifier that: is designed for use with feedback operates usually over a range of supply voltages has a very large voltage gain usually (not always) has a large input impedance usually (not always) has a small output impedance is designed to not oscillate when feedback is applied (see ece137B)

Bias analysis of op-amps

There will be a small mismatch between input transistors, and possibly also of their load, etcetera. As a result:

$$
V_{\text {out }}=A_{d}\left(V_{d}+V_{\text {os }}\right)=A_{d}\left(V_{\text {in }}^{+}-V_{\text {in }}^{-}+V_{\text {os }}\right)
$$

Vos is called the offset voltage, and might be $0.1-10 \mathrm{mV}$. If $A_{\mathrm{d}}=10^{6}$ and $V_{\text {os }}=1 \mathrm{mV}$, then a zero-volt input would force the output to clipping.

Consequently, op-amps are always used with feedback

DC analysis is performed by assuming that $V_{\text {out }}=0 \mathrm{~V}$, and working backward to find the required V_{d} to obtain this.
This value of V_{d} is the offset voltage $V_{o s}$.

Finding Vout given an offset voltage

$$
V_{o u t}=S d\left(V_{d}+V_{a s}\right)
$$

$v_{0 u t}=A d\left[v_{i n}+v_{0}-\beta v_{0 . r}\right]$
$v_{0, t}=\frac{1}{\beta} \frac{T}{1+T}\left(v_{i n}+v_{0 s}\right) ; \operatorname{T}=\operatorname{Ad\beta }$
Dos is simply amplified by the closed.loop gain.

How to get high voltage gain ?

We seek $A_{D} \beta \gg 1$, so large op-amp gain is desired.

Suppose $V_{A 1}=V_{A 2}$ Then $R_{C E 1}=R_{C E 2}=V_{A} / I_{C}$
$-A_{V}=g_{m 1} R_{\text {Leq }}=g_{m 1}\left(R_{C E 1} \| R_{\text {CE } 2}\right)=\left(I_{C} / V_{T}\right)\left(V_{A} / 2 I_{C}\right)=V_{A} / 2 V_{T}$
If $V_{A}=100 \mathrm{~V}$, then $\left\|A_{V}\right\|=50 \mathrm{~V} / 26 \mathrm{mV} \cong 2000$
\rightarrow gain is limited by the Early voltage

How to get high voltage gain ?

$$
\begin{aligned}
& \text { I } V_{D D} \text { Suppose } V_{D Q} \ll V_{D D} \rightarrow R_{L} \cong V_{D D} / I_{D} \\
& -A_{V}=g_{m} R_{\text {Leq }}=g_{m}\left(R_{L} \| R_{D S}\right)<g_{m} R_{L} \text {; now assume mobility-limited } \\
& =\left(2 I_{D} /\left(V_{G S}-V_{T H}\right)\right)\left(V_{D D} / I_{D}\right)=2 V_{D D} /\left(V_{G S}-V_{T H}\right) \\
& \text { but only if }\left(V_{G S}-V_{T H}\right)>2 V_{T} \text {; otherwise } g_{m}=I_{D} / n V_{T} \\
& \text { If } V_{C C}=1 \mathrm{~V} \text {, then }\left\|A_{V}\right\| \leq 1 \mathrm{~V} /(n \cdot 26 \mathrm{mV}) \leq 1 \mathrm{~V} / 26 \mathrm{mV} \cong 40 \\
& \rightarrow \text { gain is limited by the power supply. Need low }\left(V_{G S}-V_{T H}\right)
\end{aligned}
$$

Suppose $\lambda_{1}=\lambda_{2}$ Then $R_{D S 1}=R_{D S 2}=1 / \lambda I_{D}$
$-A_{V}=g_{m 1} R_{L e q}=g_{m 1}\left(R_{D S 1} \| R_{D S 2}\right) ;$ now assume mobility-limited

$$
=\left(2 I_{D} /\left(V_{G S}-V_{T H}\right)\right)\left(1 / 2 \lambda I_{D}\right)=1 /\left(\lambda\left(V_{G S}-V_{T H}\right)\right)
$$

but only if $\left(V_{G S}-V_{T H}\right)>2 V_{T}$; otherwise $g_{m}=I_{D} / n V_{T}$
If $1 / \lambda=4 \mathrm{~V}$, then $\left\|A_{V}\right\| \leq 4 \mathrm{~V} /(2 \cdot n \cdot 26 \mathrm{mV}) \leq 4 \mathrm{~V} / 52 \mathrm{mV} \cong 80$
\rightarrow gain is limited by $(1 / \lambda)$. Need low $\left(V_{G S}-V_{T H}\right)$.

Cascodes for high voltage gain

Overall: $A_{V}=A_{V 1} A_{V 2}=-\left(g_{m} R_{C E}\right)^{2} / 2=-\left(V_{A} / V_{T}\right)^{2} / 2$
If $V_{A}=100 \mathrm{~V}$ then $-A_{V}=(100 \mathrm{~V} / 26 \mathrm{mV})^{2} / 2 \cong(4000)^{2} / 2=8 \cdot 10^{6}$

Cascode: alternate analysis

Norton (output) resistance
$R_{\text {out } 2}=R_{\text {out } 3} \cong g_{m} R_{C E}^{2}$
$R_{\text {out }}=R_{\text {out } 3} \| R_{\text {out } 2} \cong g_{m} R_{C E}^{2} / 2$

Norton (output) current
$R_{\text {in } 2}$ is now $1 / g_{m}$, so $R_{\text {in } 2} \ll R_{C E 1}$, so
$I_{\text {out }} \cong g_{m} V_{\text {in }}$
x_{0}

$$
-\left(g_{m} R_{C E}\right)^{2} V_{i n} \overbrace{\square}^{+} \mathrm{m}_{g_{m} R_{C E} / 2}^{0}
$$

Norton and Thevenin models: voltage gain is $-\left(g_{m} R_{D S}\right)^{2} / 2$

FET Cascode

Example: $1 / \lambda=4 \mathrm{~V},\left(V_{G S}-V_{T H}\right)=0.1 \mathrm{~V} \rightarrow\left|A_{V 1} A_{V 2}\right|=800$

A simple op-amp

The compensation capacitor C_{C} will be explained in ece 137B

A simple op-amp: DC bias

Assume that all transistors have identical I_{S}
$\beta=100, V_{A}=100 \mathrm{~V}$

A simple op-amp: Small-signal (1)

A simple op-amp: Small-signal (2)

$$
\begin{array}{ll}
\end{array}
$$

A simple op-amp: Small-signal (3)

$g_{m 1,2,4,3}=1 / 260 \Omega$
$R_{C E 1,2,3,4}=V_{A} / I_{C} \cong 100 \mathrm{~V} / 0.1 \mathrm{~mA}=1 \mathrm{M} \Omega$
$R_{\text {out } 4} \cong R_{\text {CE } 4}\left(1+g_{m 4} R_{E 4}\right)=1 \mathrm{M} \Omega(1+3 \mathrm{k} \Omega / 260 \Omega)=12.5 \mathrm{M} \Omega$
$R_{\text {Leq } 1,2,3,4}=R_{\text {CE2 }}\left\|R_{\text {out } 4}\right\| R_{\text {in } 5}=1 \mathrm{M} \Omega\|12.5 \mathrm{M} \Omega\| 13 \mathrm{k} \Omega \cong 13 \mathrm{k} \Omega$
$A_{v 1,2,3,4}=g_{m 1,2} R_{\text {Leq }}=13 \mathrm{k} \Omega / 260 \Omega=50$
$R_{i n, \text { diff }}=2 \beta / g_{m 1,2}=2 \cdot 100 \cdot 260 \Omega=52 \mathrm{k} \Omega$
Overall differential gain:
$A_{d}=50 \cdot 3200 \cdot 0.992 \cdot 0.947=150,000$

Common-mode gain (?)

The above andysis suggests infinite cup. It needs to be repeated given assumed mismatches between Q1-D 2 and $03-04$.

Low-voltage CMOS Amplifier

Low-voltage CMOS Amplifier: Comments

FETs:
$K_{\mu}=10 \mathrm{~mA} / \mathrm{V}^{2}\left(W_{g} / 1 \mu \mathrm{~m}\right)$
$K_{v}=2 \mathrm{~mA} / \mathrm{V}\left(W_{g} / 1 \mu \mathrm{~m}\right)$
$\Delta V=0.1 \mathrm{~V}$
$V_{t h}= \pm 0.2 \mathrm{~V}$
$1 / \lambda=4 \mathrm{~V}$

Despite the cascode gain stage and the push-pull output stage, this design can operate with $+/-0.5 \mathrm{~V}$ supplies and yet provide $+/-0.1 \mathrm{~V}$ output

Most on-wafer CMOS op-amps do not need to drive significant output current and therefore have no source-follower output stage. Much larger voltage swings are then possible.

Low-voltage CMOS Amplifier

With all FETs except M17,18
operating at
$V_{g s}= \pm 0.3 \mathrm{~V}$ and $V_{t h}= \pm 0.2 \mathrm{~V}$, the FET saturation voltage is $V_{D S, s a t}=0.1 \mathrm{~V}$.

Note carefully that all FETs are biased with $V_{D S} \geq 0.1 \mathrm{~V}$.

All FET widths can be calculated from
$I_{D}=K_{\mu}\left(V_{g s}-V_{t h}\right)^{2}\left(1+\lambda V_{D S}\right)$
where $K_{\mu}=10 \mathrm{~mA} / V^{2}\left(W_{g} / 1 \mu \mathrm{~m}\right)$.

Diamond driver output stage

This is a different form of a push-pull output stage. DC bias design is similar to a current mirror.
$V_{g s 9}+V_{g s 10}=V_{g s 11}+V_{g s 12}$.
If $I_{D 16,9}=I_{D 10,20}$, and if $W_{g 11} / W_{g 9}=W_{g 12} / W_{g 10}$ then $I_{D 11,12} / I_{D 9,10,16,20}=W_{g 11} / W_{g 9}$

For large output signals,
M9 and M11 carry the positive swing
while M10 and M12 carry the negative swing
Voltage gain is calculated in the usual way.
Close to 1 if $R_{L} \gg\left(1 / g_{m 11,12}\right)$
M16 and M20 are biased with $\left|V_{D S}\right|=0.2 \mathrm{~V}$,
while $\left|V_{D S, \text { sat }}\right|=0.1 \mathrm{~V}$, so the maximum
output is $\pm 0.1 \mathrm{~V}$. Not very large.

Cascode gain stage

Using $I_{D}=K_{\mu}\left(V_{g s}-V_{t h}\right)^{2}\left(1+\lambda V_{D S}\right)$, pick R_{2} and R_{3}, and $W_{g 17}$ and $W_{g 18}$, so that $V_{g s 17}=V_{g s 1}=0.4 \mathrm{~V}$.

This biases M8 and M5 with $V_{D S}=0.1 \mathrm{~V}$.
Given the bias conditions, $V_{D S, s a t}=0.1 \mathrm{~V}$ for M8 and M5.
$g_{m}=2 I_{D} /\left(V_{g s}-V_{t h}\right)=2(25 \mu \mathrm{~A}) /(0.1 \mathrm{~V})=0.5 \mathrm{mS}$.
$R_{D S}=1 / \lambda I_{D}=4 \mathrm{~V} / 25 \mu \mathrm{~A}=160 \mathrm{k} \Omega$
As derived earlier,
$A_{v 5} A_{v 6}=-\left(g_{m} R_{D S}\right)^{2} / 2=3,200$

For M6 and M7: $V_{D S, s a t}=0.1 \mathrm{~V}$ but $V_{D S, b i a s}=0.4 \mathrm{~V}$.
Consequently, the maximum output is $\pm 0.3 \mathrm{~V}$.

Differential Input stage

$$
\begin{aligned}
& g_{m}=2 I_{D} /\left(V_{g s}-V_{t h}\right)=2(25 \mu \mathrm{~A}) /(0.1 \mathrm{~V})=0.5 \mathrm{mS} \\
& R_{D S}=1 / \lambda I_{D}=4 \mathrm{~V} / 25 \mu \mathrm{~A}=160 \mathrm{k} \Omega
\end{aligned}
$$

As derived earlier,

$$
A_{v 1,2,3,4}=\left(g_{m} R_{D S}\right) / 2=40
$$

Overall op-amp gain:

$$
A_{D}=A_{v 1,2,3,4} A_{V 5} A_{V 6} A_{V 9} A_{V 11} \cong 40 \cdot 3200=128,000
$$

Op-amp with no output buffer

If the load impedances are always very high, then we can remove the output buffer

The outuput can then swing $\pm 0.3 \mathrm{~V}$

More on op-amp design

Please see the documents associated with lab project 3

