ECE137A class notes, UCSB, Mark Rodwell, copyright 2019

ECE137A, Notes Set 14:
Op-Amps

Mark Rodwell,

Doluca Family Chair, ECE Department
University of California, Santa Barbara
rodwell@ece.ucsb.edu



ECE137A class notes, UCSB, Mark Rodwell, copyright 2019

Operational Amplifier

Characteristics of op-amp:

s A, 1s very large. Very large CMRR
- Large R, . Small R,

o Y (e

out

! % ~ Example of feedback network:
V- =pV ., where B=R, /(R +R))

ut
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Operational Amplifier with Feedback

Combine these:

R v, 1 AR LT
v 7 B 1+ApL B 14T
where 4, = differential gain or open-loop gain, a.k.a. 4,

B = fteedback factor. 4., = closed-loop gain.

T = loop transmission

V. 1/ pifT >>1
ST <<1

124

If the loop transmission is very large,
the closed-loop gain is precisely set by the feedback factor
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Negative feedback

Feedback can provide precise control of circuit gain.
If A B is large, then the gain is contolled by the feedback resistors

Note that the external feedback components also set the DC bias.

Op-amp bias is almost always set by the feedback network:
For now, analyze by assuming that Vout=0V,
and work back to the input to find (V*-V").

An op-amp is an amplifier that:
is designed for use with feedback
operates usually over a range of supply voltages
has a very large voltage gain
usually (not always) has a large input impedance
usually (not always) has a small output impedance
is designed to not oscillate when feedback is applied (see ece137B)
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Bias analysis of op-amps

There will be a small mismatch between input transistors, and possibly also of
their load, etcetera. As a result:

Vs = A, Vg +V,) = 4, (V) =V, V)

out

Vos is called the offset voltage, and might be 0.1-10mV.
If A;=10° and V_=1mV, then a zero-volt input would force the output to

clipping.

Consequently, op-amps are always used with feedback

DC analysis is performed by assuming that V, =0V,
and working backward to find the required V, to obtain this.

This value of V, is the offset voltage V...
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Finding Vout given an offset voltage

Lok = ,46{#”/#4"":-’?'4/:‘

Vos E
; F

. 7 ' . - .
"Z—'E..S i _;r._'_fl,"f .-_i..-m/ﬁ" .;"'.'E:f/ -E_?f_i/ Eae C’Ajffz-?/'fffr’ﬁ}" -y
‘/j /.7
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How to get high voltage gain ?

We seek 4, f >> 1, so large op-amp gain 1s desired.

;R Suppose V., <<V =R, =V /1,

L

7 ~4, =g,R,,, = gu(R N Rep) <8, R, =Uc Vi) Vee ) =V IV
——o If V.. =10V, then||4,| <10V/26mV =400

V,-n°_|: \ — gain is limited by the power supply

VC,Q
v
VCC
‘l:JQ2 Suppose V,, =V,, ThenR.,, =R ., =V, /I,
]C,Q { ¥ o —4, = gmlRLeq =g (Repy [| Repy)) = U I V)V 1 21) =V, 2V
——o0
v 0 If V, =100V, then ||4,| = 50V/26mV = 2000
in 1
— gain is limited by the Early voltage
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How to get high voltage gain ?

Suppose V,, <<V,, >R, =V, /1,

DD
7 ;RL -4, =g,R,., =g,R, || Ry)<g,R, ; now assume mobility-limited
D.0
Vot =2, [ Vs =V DWVop 1 1) =2V I Vs =V )
. o_||: \ but only if (V. =V, ) > 2V, ; otherwise g =1, /nV,
" Vo If V.. =1V, then ||4,||<1V/(n-26mV) <1V/26mV = 40
v — gain 1s limited by the power supply. Need low (V. —V_,,)
Ve Suppose 4, =4, ThenR, ., =R, =1/ 41,
—|EM2 -4, =g, R, = & (Rpg || Rpg,); now assume mobility-limited
[D,Q i = (211) /(VGS Vi N1/ 21]0) =1/ (A(VGS —Vin )
y but only if (V. =V, ) >2V,; otherwise g, =1,/ nV,
S
B : If1/ A =4V, then ||4,|| < 4V/(2-n-26mV) < 4V/52mV = 80
14

v — gain 1s limited by (1/ A). Need low (V. =V, ).



ECE137A class notes, UCSB, Mark Rodwell, copyright 2019

Cascodes for high voltage gain

Approximate: Assume impedances presented to bases are small

Q4 Note: g, = &,0 =&z =& Ad Ry = Ry = Ripy = Ry

Q2 : common gate
R 5 Q3 R, =Rp(1+g,R)= ngcziE
out
_T V R — R

Leq?2 out3

——O $ R, = (l/gm)(1+RLeq3 /RCE) =R (1)
4, = RLeq2 /Rin2 =g, Rex

Ol : common-source
RLeql =Repy || Ry = Reyp [| Rep = Ry /2

4, = _ngLeql =—g,Rex /2 ()

Overall: 4, = A, A,, =—(g,R.,) 12=-V,/V,)* /2
If ¥, =100V then — 4, = (100V/26mV)* /2 = (4000)* /2 =8-10°
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Cascode: alternate analysis

G vd
Q,
A I~
A | A"
0,
om‘j’_T = i
R V
t |_) t $
ROUJ /
0.
e N
|~
Vi 9, "
\'4 \'4

Norton (output) resistance
~ 2
RoutZ — Rout3 — ngCE
~ 2
Rout — Rout3 || Rout2 — ngCE /2

T
—

\I |~

2 —.

|~

e .
v v

Norton (output) current
R ,i1snowl/g ,sOR , <<R_., S0
I =gV

10) m’ in

Norton and Thevenin models:
(;5 % _ 2
gm I/z'n ngCE/2 (ngCE) an gm]aCE/2 VOltage galn iS _ (ngDS )2 / 2



ECE137A class notes, UCSB, Mark Rodwell, copyright 2019

FET Cascode

A
By the same analysis (either method)

__’I r__ 4, = 4, 4,, =—(g,Rps )2 /2
3
V

out
@ 5 If we assume mobility-limited operation,
take R, =1/ A1,

andg =21,/V. —V,,)<I,/nV,,

’ then 4,,4,, = (2/ AV —Vy, ) 12 < (1) AnV,)?
G s R

v \4

Example:1/ A =4V, (V. —V,,)=0.1V >| 4,,4,, |=800
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A simple op-amp

0,.]
5515

The compensation capacitor C. will be explained in ecel137B




A simple op-amp: DC bias
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V..

L6 -

CC
1.5kQ
RF'13 RF14
Q 1.5kQ Q14 ST

13/| I\‘ -

in

1A RF
Y

0, Q’ZF
yot
n

$ RRef

R

Q,

3kQ 3kQ RE4

— O

I\/.

0,.]
gIIeEH
1.5kQ2

Assume that all transistors have identical /

B =100, V, =100V



ECE137A class notes, UCSB, Mark Rodwell, copyright 2019

A simple op-amp: Small-signal (1)

1Sk§ Vec 7L 5 O, / O, : push-pull. Assume Q, i1s on.
' R, E6 ]
. g Assume V=1V — [,, = 1mA.
|
= g, =1/26Q

5 o .

: 2 Q ~
I/mi : I/jn}- CC ! QH ” - RLqu — 103OQ

I( v 10

Av9 = RLeq9 /(RLeq9 +1/gm)

. 4
Q‘? Q4 2M_I:Q5 L
R g} ER b " ~1000Q/ (1030Q + 26Q) = 0.947

.y “ Ry = (R, +1/ 2,0) = 10010560
~100kQ

O, emitter follower.
g . =1/260Q
R =R =V, /1. =100V/0.ImA=100kQ
Ry ep7 = Reps | Repio Il Ryyg = 33.3kQ2.
A,=R,,/(R,,+1/g,)=33.3kQ/(33.3kQ+26002) =0.992
R, =pBR,,,+1/g,,)=100-33.6kQ

=~ 3.3MQ2
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A simple op-amp: Small-signal (2)

o e ", (0, common emitter
' I;REM Ry i
} QM 9.0V |\ ng — 1/13OQ
: Reps = Repis =V, /[c
e SIS oA Yo, »Shy ~ 100V/0.2mA=500kQ)
2 5 It A Yo ) R, = Reps(1+ g,6R:6)
; f}ER o -. = 500kQ(1+3kQ /130Q) = 12MO
i o RLeqS = Reps [| Ros | R,y =
e, = 500kQ || 12MQ || 3.3M=419kQ
.%V Ay =—g,sR,,s = —419kQ/130Q
= -3200

R .=pB/g .=100-130Q = 13kQ
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A simple op-amp: Small-signal (3)
_V/QO_I:Q] . QZI_O+VJ/2

V i l T ml, an/2 gmi,.?Vd

-

1T
0, 0,

out?2 = outd in5

Zass =1/260Q

Repiass =V, /1. 2100V/0.1mA=1MQ

R =R, (+g R.)=IMQ(+3kQ/260Q) =12.5MQ
Ryynass = Reps || Ry || Ris= IMQ || 12.5MQ || 13kQ = 13kQ)
Ayssa = &R, =13kQ/260Q = 50
R

mdir = 2871 & =2-100-260€02 = 52k

Overall differential gain:
A4, =50-3200-0.992-0.947 =150,000
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Common-mode gain (?)

e
|
.r’;._r‘f
&
. e
7 AC GEoVE BAKYST suoedS hFimte CwFR

.-"FFF".

;-: “'7’!?'5‘,:; &a OF ﬁ/&‘f—;—p&/ ”?..,/E# o5 Six wee

A iataéchel Selioegsn Or- 22 aned DOF-0O%



Low-voltage CMOS Amplifier
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SR

0.5v 0.5V -
M M
<—
[ I I
| . | |
0.2V] 0.3V M |
I
o M, | B
0.1V
in- I/in+ M7 I 0.3V
| M, M, ||—o || . M,
R, 9
-
| M, m
I\ 12
CC R -0.3V
| 3
-0.2V - | -0.1V]
M, [ 2
: 4' Mw“_

V,=+/-0.2V

.
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Low-voltage CMOS Amplifier: Comments

FETs:
M, | M, 1l . 2
:h = Kﬂ =10mA/V (Wg/lym)
V. v, K, =2mA/NW  /1um)
Ak :
L AV =0.1V
| vV, =102V
1/ A=4V
AL
i H——=—

Despite the cascode gain stage and the push-pull output stage,
this design can operate with +/- 0.5V supplies and yet provide +/- 0.1V output

Most on-wafer CMOS op-amps do not need to drive significant output current
and therefore have no source-follower output stage. Much larger voltage swings

are then possible.



Low-voltage CMOS Amplifier
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M
14
v | |

[
I

V,=+/-02V

All FET widths can be calculated from
I, =K,V =V,) 1+ V)
where K =1 OmA/V’ (W, /1um).

With all FETs except M17,18
operating at

V,=%03Vand V, =£0.2V,
the FET saturation voltage is
Vissa=0.1V.

Note carefully that all FETs
are biased with V,, 2 0.1V.
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Diamond driver output stage

T 0.5V

[,

o)

Y

This 1s a different form of a push-pull output stage.

DC bias design 1s similar to a current mirror.

Vgs9 + Vgle — Vgsll + Vgle'
IfID16,9 — ]D10,20’ and 1f ngl/Wg9:ng2/Wg10

then 1011,12 /1D9,10,16,20 = ngl/Wg9

For large output signals,
M9 and M11 carry the positive swing
while M10 and M12 carry the negative swing

Voltage gain is calculated in the usual way.
Closeto L if R, >>(1/g,,,,,)

M16 and M20 are biased with |V, |= 0.2V,

while |V, . |=0.1V, so the maximum

outputis *+0.1V. Not very large.
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Cascode gain stage

Using I, =K, (V,, V)’ (1+ AV ), pick R, and R, ,
and W, , and W, ,sothat V=V 5 =0.4V.

gsl7 gsl

This biases M8 and M5 with V, =0.1V.

Given the bias conditions, V), , =0.1V for M8 and M5.

g, =21,V —V,)=2(25uA)/(0.1V)=0.5mS.
R, =1/ A1, =4V/25uA =160kQ2

As derived earlier,

A A, =—(g Ry) /2=3,200

For M6 and M7: ¥, . =0.1V but V. =0.4V.

Consequently, the maximum output is +0.3V.



Differential Input stage
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.
A

r 3

=

\ 4

2]

g, =21,/ (V,—V,)=2(25uA)/(0.1V)=0.5mS.
R, =1/ A1, =4V/25uA =160kQ
As derived earlier,

Ayi554 =(8,Rps)/2=40

Overall op-amp gain:
Ay =A4,,544,54,64,,4,,, =40-3200 =128,000



Op-amp with no output buffer
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M]

0.5V

0.2v

+ |
| .

M,

V,=+/-02V

0.5V

out

If the load impedances
are always very high,
then we can remove

the output buffer

The outuput can
then swing +0.3V
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More on op-amp design

Please see the documents associated with lab project 3



