ECE137A, notes set 4: Emitter Degeneration, Common Source Stage

Mark Rodwell, Doluca Family Chair, ECE Department University of California, Santa Barbara rodwell@ece.ucsb.edu

Emitter Degeneration: Before

Emitter Degeneration: After

Note that bias conditions have not changed

AC Small-Signal Circuit

while we can solve this problem by KCL, and nodal analysis, this is a long method.

Emitter and source degeneration are very common.
-by design

- or otherwise: parasitic device resistance.

We need a simpler method, so we can solve malti-stage circuits easily.

Consider:

let as compute the input resistance, output resistance, and Eff Ective Eransconductan=E.

Input Resistance
input resistance

$$
\xrightarrow[\rightarrow]{\text { Ts }} \quad g_{m} V_{s k}=\beta I_{s}
$$

$$
\begin{aligned}
& V_{\text {test }}=I_{\text {test }} \cdot \mathbb{P}_{s E}+(\beta+1) I_{\text {test }} \cdot T_{E A C} \\
& 1 \\
& \beta+1 \simeq \beta \\
& P_{\text {in, }}=V_{\text {tEst }} / I_{E E S t} \cong P_{s \varepsilon}+\beta_{E E c}=\beta\left(r_{\varepsilon}+T_{E 4 c}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { From betore: 工in } \cong \frac{V_{\text {in }}}{3\left(r_{\varepsilon}+R_{\varepsilon G C}\right)} \\
& \text { Iont }=\beta \text { I in } \\
& \leadsto \text { Iout }=\frac{V_{\text {in }}}{\sqrt{z}+P_{\text {zac }}} \\
& \text { Etfective trousconductinct }=g_{n} \equiv \frac{T_{o a t}}{V_{i i}}=\frac{1}{\sqrt{z}+R_{z a c}}
\end{aligned}
$$

Output Resistance

Since MOSFET circuit analysis is a more important subject, we now simplify and approximate analysis by assuming $R_{b e} \gg R_{x}$.

Since the FET model has no element $R_{b e}$, the resulting expression will be exact in the case of FETs.

Output Resistance

Use Norton-Thevenin transformation:

Output resistance

Using this Norton-Thevenin transformation

By inspection: $V_{\text {test }}=I_{\text {test }} R_{\text {eac }}-g_{m} R_{C E} V_{b e}+I_{\text {test }} R_{c e}$
but: $V_{b e}=-I_{\text {test }} R_{\text {eac }}$
so: $R_{\text {out }}=V_{\text {test }} / I_{\text {test }}=R_{\text {eac }}+g_{m} R_{c e} R_{\text {eac }}+R_{c e} \cong R_{c e}\left(1+g_{m} R_{\text {eac }}\right)$
$R_{\text {out }} \cong R_{c e}\left(1+g_{m} R_{\text {eac }}\right)$

Output Resistance: more exact answer

ECE137AB: use the rough approximation
If, (somewhat unlikely), you are involved
in precision analog design using BJTs, then use the more exact formula.

Model of Transistor with Emitter Degeneration

$$
\begin{aligned}
R_{1 L} & \simeq \beta\left(1 / q_{m}+R_{z a c}\right) \\
& =\beta\left(r_{z}+r_{z a c}\right) \quad 1 / g_{m}^{2}=1 / q_{m}+P_{z a c}=r_{z}+R_{c a c} \\
R_{\text {out }} & \simeq r_{C E} \frac{1 / g_{m}+r_{z a c}}{1 / q_{m}} \\
& =r_{c b} \frac{r_{z}+r_{z a c}}{r_{z}}
\end{aligned}
$$

Effect of Emitter / Source Degeneration

dsqunuration has:

- increased the input resistance
- increased the output resistance.
-decreased the (zyctrinsia) transcondactanre.
... all by bht same preporti.i.

Why use Emitter / Source Degeneration ?

$$
\begin{aligned}
& \text { l) Do } \sim \frac{\text { Repag }}{\text { i/gn +reac }} \text { with deyensmitio } \\
& \mathrm{gm}_{\mathrm{m}}=4 T / \mathrm{q} E \text {, so wariatiour in dic. bias } \\
& \text { conditicus will eary tha gann... }
\end{aligned}
$$

... /zss gain var atioi with degoneration.
2 with deyeneration.
we can sat the birs current hingh,
so as to gat lagz catolt clipiong limts,
yet sat the gaid at somr lower Cdeseredl udas using deyzneration.

Emitter Degeneration Example

Emitter Degeneration Example: Parameters

$$
\begin{aligned}
& \tilde{g}=\left(\mathrm{Pe}+r_{e a c}\right)^{-1}=1 / 126 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& (3+1)\left(r_{e}+\text { Reach }\right)=12.7 \mathrm{kR}
\end{aligned}
$$

Emitter Degeneration Example: Analysis

Common-Source Amplifier: FET Parameters

Use the following (250 nm FET from notes set 2)

$$
\begin{aligned}
& V_{t h}=0.3 \mathrm{~V} \\
& K_{\mu}=\mu c_{g s} W_{g} / 2 L_{g}=0.55 \mathrm{~mA} / \mathrm{V}^{2} \cdot\left(W_{g} / 1 \mu \mathrm{~m}\right) \\
& K_{v}=c_{g s} v_{i n j} W_{g}=0.69 \mathrm{~mA} / \mathrm{V} \cdot\left(W_{g} / 1 \mu \mathrm{~m}\right) \\
& \Delta V=v_{i n j} L_{g} / \mu=0.625 \mathrm{~V} \\
& 1 / \lambda=10 \mathrm{~V}
\end{aligned}
$$

For $V_{t h} \leq V_{g s} \leq V_{t h}+\Delta V$: mobility-limited
For $V_{t h}+\Delta V \leq V_{g s}$: velocity-limited

Common-Source Amplifier: DC Bias Design

Pick $W_{g}=40 \mu \mathrm{~m} \rightarrow K_{\mu}=22 \mathrm{~mA} / \mathrm{V}^{2}, K_{v}=27.6 \mathrm{~mA} / \mathrm{V}$
Let's bias the device @ $V_{g s}-V_{t h}=0.2 \mathrm{~V}$ and $V_{D S}=1.0 \mathrm{~V}$.
$\left(V_{g s}-V_{t h}\right)=0.2 \mathrm{~V}<\Delta V=0.625 \mathrm{~V} \rightarrow$ Mobility-limited
$\rightarrow I_{D}=22 \mathrm{~mA} / \mathrm{V}^{2} \cdot(0.2 \mathrm{~V})^{2}(1+1 \mathrm{~V} / 10 \mathrm{~V})=0.97 \mathrm{~mA}$.
$V_{t h}=0.3 \mathrm{~V} \rightarrow V_{g s}=0.5 \mathrm{~V}$

Common-Source Amplifier: DC Bias Design

bias the source @ $V_{s}=0.5 \mathrm{~V} \rightarrow R_{S S}=0.5 \mathrm{~V} / 0.97 \mathrm{~mA}=515 \Omega$
$V_{g}=V_{g s}+V_{s}=0.5 \mathrm{~V}+0.5 \mathrm{~V}=1.0 \mathrm{~V}$
we can obtain this by picking $R_{g 2}=1.0 \mathrm{M} \Omega, R_{g 1}=2.3 \mathrm{M} \Omega$.
bias the drain @ $V_{D}=1.5 \mathrm{~V}$

$$
\rightarrow R_{D}=(3.3 \mathrm{~V}-1.5 \mathrm{~V}) / 0.97 \mathrm{~mA}=1.85 \mathrm{k} \Omega
$$

Element Values

Common-Source Amplifier: Small-Signal Analysis

Mobility-limited: $g_{m} \cong 2 K_{\mu}\left(V_{g s}-V_{t h}\right)\left(1+\lambda V_{D S}\right)=2\left(22 \mathrm{~mA} / \mathrm{V}^{2}\right)(0.2 \mathrm{~V})(1+1 \mathrm{~V} / 10 \mathrm{~V})=9.86 \mathrm{mS}$.
$R_{D S}=1 / \lambda I_{D}=10 \mathrm{~V} / 0.97 \mathrm{~mA}=10.3 \mathrm{k} \Omega$
$R_{\text {Leq }}=R_{D S}\left\|R_{D}\right\| R_{L}=10.3 \mathrm{k} \Omega\|1.85 \mathrm{k} \Omega\| 10 \mathrm{k} \Omega=1.36 \mathrm{k} \Omega$
$R_{i n, \mathrm{Amp}}=R_{g 1}\left\|R_{g 2}=2.3 \mathrm{M} \Omega\right\| 1 \mathrm{M} \Omega=697 \mathrm{k} \Omega$
$v_{\text {out }} / v_{\text {in }}=-g_{m} R_{\text {Leq }}=-(9.86 \mathrm{mS})(1.36 \mathrm{k} \Omega)=-13.2$
$v_{\text {in }} / v_{\text {gen }}=R_{\text {in,Amp }} /\left(R_{\text {in,Amp }}+R_{\text {gen }}\right)=697 \mathrm{k} \Omega /(697 \mathrm{k} \Omega+100 \mathrm{k} \Omega)=0.875$
$v_{\text {out }} / v_{\text {gen }}=\ldots=-11.5$

Maximum Signal Swings

bias solution:

Maximam signal swings:

Maximum Signal Swings: Knee Voltage

a) Maze.mum Negative swing:

Knee occurs when $V_{d g}=-V_{t h}=-0.3 \mathrm{~V}$
Which is when $V_{D S}=V_{g s}+V_{D G}=0.5 \mathrm{~V}-0.3 \mathrm{~V}=0.2 \mathrm{~V}$
Bias value of $V_{D S}: 1 \mathrm{~V}$
Minimum value $V_{D S}: 0.2 \mathrm{~V}$
Maximum negative - going output $=0.8 \mathrm{~V}$

Maximum Signal Swings: Cutoff

The transistor has 0.97 mA DC drain current.
The most we can do is decrease this currentto zero.
$\Delta I_{D} \downarrow_{\text {max }}=0.97 \mathrm{~mA}$ (a decrease)

The equivant load resistance is $R_{\text {Leq }}=1.36 \mathrm{k} \Omega$.
$\Delta V_{\text {out }}=-R_{\text {Leq }} \Delta I_{D}$
$\Delta V_{\text {out }} \uparrow_{\text {max }}=R_{\text {Leq }} \cdot \Delta I_{D} \downarrow_{\text {max }}=0.97 \mathrm{~mA} \cdot 1.36 \mathrm{k} \Omega=+1.3 \mathrm{~V}$
The maximum positive output swing is 1.3 V .

DC bias analysis by iteration

In working the above problem, we had been given desired DC bias currents and voltages, and had found the required FET width and resistor values.

Suppose, instead, we had been given the FET width and resistor values, and had been asked to find the DC bias currents and voltages.

Such analysis can be difficult.
Iteration makes the calculations easier.

DC bias analysis by iteration

FET: $K_{\mu}=22 \mathrm{~mA} / \mathrm{V}^{2}, K_{v}=27.6 \mathrm{~mA} / \mathrm{V}$,
$\Delta V=0.625 \mathrm{~V}, 1 / \lambda=10 \mathrm{~V}, V_{t h}=0.3 \mathrm{~V}$

We first find $V_{\text {gate }}=3.3 \mathrm{~V}(1 \mathrm{M} \Omega) /(1 \mathrm{M} \Omega+2.3 \mathrm{M} \Omega)=1.0 \mathrm{~V}$.

DC bias analysis by iteration

Let's assume mobility-limited, and then check if assumption is correct.
$I_{D}=K_{\mu}\left(V_{g s}-V_{t h}\right)^{2}\left(1+\lambda V_{D S}\right)$
but $V_{g s}=V_{g}-I_{D} R_{S S}$ and $V_{D S}=V_{D D}-I_{D}\left(R_{S S}+R_{D}\right)$
So: $I_{D}=K_{\mu}\left(V_{g}-I_{D} R_{S S}-V_{t h}\right)^{2}\left(1+\lambda V_{D D}-\lambda I_{D}\left(R_{S S}+R_{D}\right)\right)$
$I_{D}=\left(22 \mathrm{~mA} / \mathrm{V}^{2}\right)\left(0.7 \mathrm{~V}-I_{D} \cdot 515 \Omega\right)^{2}\left(1+3.3 \mathrm{~V} / 10 \mathrm{~V}-I_{D}(2365 \Omega) / 10 \mathrm{~V}\right)$
This is a cubic equation! Terribly tedious to solve.
We need a quicker technique to solve such problems.

DC bias analysis by iteration

First ignore the $\lambda V_{D S}$ term, i.e. treat it as a perturbation

$$
\begin{aligned}
& \rightarrow I_{D} \cong K_{\mu}\left(V_{g}-I_{D} R_{S S}-V_{t h}\right)^{2}=\left(22 \mathrm{~mA} / \mathrm{V}^{2}\right)\left(0.7 \mathrm{~V}-I_{D} \cdot 515 \Omega\right)^{2} \\
& I_{D} /\left(22 \mathrm{~mA} / \mathrm{V}^{2}\right)=(0.7 \mathrm{~V})^{2}-2(0.7 \mathrm{~V})\left(I_{D} \cdot 515 \Omega\right)+\left(I_{D} \cdot 515 \Omega\right)^{2} \\
& 0=\left(I_{D} \cdot 515 \Omega\right)^{2}-I_{D}\left[2(0.7 \mathrm{~V})(515 \Omega)+1 /\left(22 \mathrm{~mA} / \mathrm{V}^{2}\right)\right]+(0.7 \mathrm{~V})^{2} \\
& 0=\left(I_{D}\right)^{2}-I_{D}\left[2(0.7 \mathrm{~V}) /(515 \Omega)+1 /\left(22 \mathrm{~mA} / \mathrm{V}^{2}\right) /(515 \Omega)^{2}\right]+(0.7 \mathrm{~V})^{2} /(515 \Omega)^{2} \\
& 0=I_{D}^{2}-I_{D}(2.89 \mathrm{~mA})+(1.36 \mathrm{~mA})^{2} \\
& 0=a I_{D}^{2}+b I_{D}+c \rightarrow I_{D}=-(b / 2 a) \pm \sqrt{(b / 2 a)^{2}-c / a} \\
& I_{D}=1.44 \mathrm{~mA} \pm \sqrt{(1.44 \mathrm{~mA})^{2}-(1.36 \mathrm{~mA})^{2}}=1.44 \mathrm{~mA} \pm 0.49 \mathrm{~mA}=1.94 \mathrm{~mA}, 0.954 \mathrm{~mA} .
\end{aligned}
$$

DC bias analysis by iteration

Now estimate the $\lambda V_{D S}$ term
$I_{D}=0.954 \mathrm{~mA}$
so: $V_{S}=0.954 \mathrm{~mA} \cdot 515 \Omega=0.491 \mathrm{~V}$
and: $V_{D}=3.3 \mathrm{~V}-0.954 \mathrm{~mA} \cdot 1.85 \mathrm{k} \Omega=1.535 \mathrm{~V}$.
so: $V_{D S}=1.535 \mathrm{~V}-0.491 \mathrm{~V}=1.043 \mathrm{~V}$.

Now use this value of $V_{D S}$ to estimate the $\lambda V_{D S}$ term
$\left(1+\lambda V_{D S}\right) \cong 1+1.043 \mathrm{~V} / 10 \mathrm{~V}=1.104$.

Now use this better, but still slightly incorrect, value of $\lambda V_{D S}$ to calculate I_{D} :

DC bias analysis by iteration

$$
\begin{aligned}
& \rightarrow I_{D} \cong(1.104) K_{\mu}\left(V_{g}-I_{D} R_{S S}-V_{t h}\right)^{2}=\left(24.29 \mathrm{~mA} / \mathrm{V}^{2}\right)\left(0.7 \mathrm{~V}-I_{D} \cdot 515 \Omega\right)^{2} \\
& I_{D} /\left(24.29 \mathrm{~mA} / \mathrm{V}^{2}\right)=(0.7 \mathrm{~V})^{2}-2(0.7 \mathrm{~V})\left(I_{D} \cdot 515 \Omega\right)+\left(I_{D} \cdot 515 \Omega\right)^{2} \\
& 0=\left(I_{D}\right)^{2}-I_{D}\left[2(0.7 \mathrm{~V}) /(515 \Omega)+1 /\left(24.29 \mathrm{~mA} / \mathrm{V}^{2}\right) /(515 \Omega)^{2}\right]+(0.7 \mathrm{~V})^{2} /(515 \Omega)^{2} \\
& 0=I_{D}^{2}-I_{D}(2.87 \mathrm{~mA})+(1.36 \mathrm{~mA})^{2} \\
& I_{D}=1.44 \mathrm{~mA} \pm \sqrt{(1.44 \mathrm{~mA})^{2}-(1.36 \mathrm{~mA})^{2}}=1.44 \mathrm{~mA} \pm 0.436 \mathrm{~mA}=1.90 \mathrm{~mA}, 0.97 \mathrm{~mA} .
\end{aligned}
$$

If necessary, we can iterate further.
The answer is, however, now very close to exact

Source Degeneration

Source Degeneration

Same derivation as with bipolar :
$1 / \widetilde{g}_{m}=1 / g_{m}+R_{S, A C}$
$\widetilde{R}_{\text {out }}=R_{D S}\left(1+g_{m} R_{S, A C}\right)$

