ECE137A, Notes Set 9: Multi-stage examples: active loads, current mirrors, Darlingtons, cascodes, push-pull stages

Mark Rodwell, Doluca Family Chair, ECE Department University of California, Santa Barbara rodwell@ece.ucsb.edu

MOSFET Current Mirrors

Suppose we want to provide desired, fixed bias currents to several circuits:

In either case:
$\frac{I_{D 2}}{I_{D 1}}=\frac{W_{g 2}}{W_{g 1}} \cdot \frac{\left(1+\lambda V_{D S 2}\right)}{\left(1+\lambda V_{D S 1}\right)} ;$ similar expression for $\frac{I_{D 3}}{I_{D 1}}$

We would like to have $I_{D 2} / I_{D 1}=W_{g 2} / W_{g 1}$

MOSFET Current Mirrors

MOSFET Current Mirror Example

$$
\begin{aligned}
& K_{\mu}=10 \mathrm{~mA} / \mathrm{V}^{2} \cdot\left(W_{g} / 1 \mu \mathrm{~m}\right) \\
& K_{v}=2 \mathrm{~mA} / \mathrm{V} \cdot\left(W_{g} / 1 \mu \mathrm{~m}\right) \\
& \Delta V=0.1 \mathrm{~V} \\
& V_{t h}=0.3 \mathrm{~V} \\
& 1 / \lambda=4 \mathrm{~V}
\end{aligned}
$$

Let us design the circuit
to give the indicated currents
Q_{1} carries 0.1 mA at $V_{g s}=V_{D S}=0.4 \mathrm{~V}$
$\left(V_{g s}-V_{t h}\right)=0.1 \mathrm{~V}=\Delta \mathrm{V} \rightarrow$ boundary of velocity- and mobility-limited regions.
$I_{D 1}=K_{\mu}\left(V_{g s}-V_{t h}\right)^{2}\left(1+\lambda V_{D S 1}\right)$
$0.1 \mathrm{~mA}=10 \mathrm{~mA} / \mathrm{V}^{2}\left(W_{g} / 1 \mu \mathrm{~m}\right)(0.1 \mathrm{~V})^{2}(1+0.4 \mathrm{~V} / 4 \mathrm{~V}) \rightarrow W_{g}=0.91 \mu \mathrm{~m}$
Q_{2} and Q_{3} carry $50 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$ at $V_{g s}=V_{D S}=0.4 \mathrm{~V}$
\rightarrow Similar calculations $\rightarrow W_{g 2}=0.45 \mu \mathrm{~m}, W_{g 3}=0.91 \mu \mathrm{~m}$

MOSFET Current Mirror Example

Now suppose $V_{D S 2}$ and $V_{D S 3}$
are increased

How much do $I_{D 2}$ and $I_{D 3}$ change ?
$\frac{I_{D 2}}{I_{D 1}}=\frac{W_{g 2}}{W_{g 1}} \cdot \frac{\left(1+\lambda V_{D S 2}\right)}{\left(1+\lambda V_{D S 1}\right)}=\frac{1}{2} \cdot \frac{(1+0.8 \mathrm{~V} / 4 \mathrm{~V})}{(1+0.4 \mathrm{~V} / 4 \mathrm{~V})}=\frac{1}{2} \cdot \frac{11}{10}$
$I_{D 2}=55 \mu \mathrm{~A}$.
Similar calculation $\rightarrow I_{D 3}=110 \mu \mathrm{~A}$

Variation in output currents due to $\left(1+\lambda V_{D S}\right)$ terms.

MOS multi-stage amplifier example

FET parameters

$$
\begin{aligned}
& K_{\mu}=10 \mathrm{~mA} / \mathrm{V}^{2} \cdot\left(W_{g} / 1 \mu \mathrm{~m}\right) \\
& K_{v}=2 \mathrm{~mA} / \mathrm{V} \cdot\left(W_{g} / 1 \mu \mathrm{~m}\right) \\
& \Delta V=0.1 \mathrm{~V} \\
& V_{\text {th }}=0.3 \mathrm{~V} \\
& 1 / \lambda=4 \mathrm{~V}
\end{aligned}
$$

Simple two-stage amplifier:
Low-voltage operation
DC-coupled input, at zero volts, even with only a positive supply voltage.

MOS multi-stage amplifier example

Each FET carries 0.1 mA at $\left|V_{G S}\right|=\left|V_{D S}\right|=0.4 \mathrm{~V}$
$\left|V_{G S}\right|=0.4 \mathrm{~V} \rightarrow$ boundary of velocity- and mobility-limited regions.
$I_{D 1}=K_{\mu}\left(V_{g s}-V_{t h}\right)^{2}\left(1+\lambda V_{D S 1}\right) \rightarrow W_{g}=0.91 \mu \mathrm{~m}$ for all FETs

Multi-stage amplifier: small-signal analysis

FET small-signal parameters:
mobility-limited $\rightarrow g_{m}=2 I_{D} /\left(V_{g s}-V_{t h}\right)=2 \mathrm{mS}$
$R_{D S}=1 / \lambda I_{D}=4 \mathrm{~V} / 0.1 \mathrm{~mA}=40 \mathrm{k} \Omega$
M_{2} : common-source

$$
\begin{aligned}
& R_{\text {Leq } 2}=R_{D S 2}\left\|R_{D S 5}=40 \mathrm{k} \Omega\right\| 40 \mathrm{k} \Omega=20 \mathrm{k} \Omega \\
& A_{v 2}=-g_{m 2} R_{\text {Leq } 2}=2 \mathrm{mS} \cdot 20 \mathrm{k} \Omega=-40 \\
& R_{\text {in } 2}=\infty \Omega
\end{aligned}
$$

M_{1} : common-drain, a.k.a. source follower

$$
\begin{aligned}
& R_{\text {Leq } 1}=R_{D S 1}\left\|R_{D S 4}\right\| R_{\text {in } 2}=40 \mathrm{k} \Omega\|40 \mathrm{k} \Omega\| \infty \Omega=20 \mathrm{k} \Omega \\
& A_{v 2}=\frac{R_{\text {Leq } 1}}{R_{\text {Leq } 1}+1 / g_{m 1}}=\frac{20 \mathrm{k} \Omega}{20 \mathrm{k} \Omega+500 \Omega}=\frac{40}{41}=0.976 \\
& R_{i n 1}=\infty \Omega
\end{aligned}
$$

Overall: $A_{v}=A_{v 1} A_{v 2}=0.976(-40)=-39$

Multi-stage amplifier: maximum signal swings

Transistors are operating at mobility/velocity boundary.
OK to use either model. Mobility model: $V_{D S, \text { knee }}=V_{g s}-V_{t h}$

M_{2} bias voltage: $V_{D S Q}=0.4 \mathrm{~V}$.
M_{2} knee voltage:
$V_{\text {DSKиеe }}=V_{g s}-V_{t h}=0.4 \mathrm{~V}-0.3 \mathrm{~V}=0.1 \mathrm{~V}$
$\Delta V_{D 2 \text { max }} \downarrow=0.4 \mathrm{~V}-0.1 \mathrm{~V}=0.3 \mathrm{~V}$
0.3 V maximum negative swing
M_{2} bias current: $I_{D Q}=100 \mu \mathrm{~A}$.
M_{2} minimum current: $I_{D \text { min }}=0 \mu \mathrm{~A}$.

$$
\begin{aligned}
& \Delta I_{D, \text { max }} \downarrow=100 \mu \mathrm{~A} \text { (decrease) } \\
& R_{\text {Leq } 2}=20 \mathrm{k} \Omega \\
& \Delta V_{D, \text { max }} \uparrow=100 \mu \mathrm{~A} \cdot 20 \mathrm{k} \Omega=2 \mathrm{~V}
\end{aligned}
$$

2 V maximum positive swing

Multi-stage amplifier: maximum signal swings

M_{5} bias voltage: $V_{D S Q}=0.4 \mathrm{~V}$.
M_{5} knee voltage:

$$
\begin{aligned}
& V_{D S K \text { nee }}=V_{g s}-V_{t h}=0.4 \mathrm{~V}-0.3 \mathrm{~V}=0.1 \mathrm{~V} \\
& \Delta V_{D 5 \max } \uparrow=0.4 \mathrm{~V}-0.1 \mathrm{~V}=0.3 \mathrm{~V} \\
& 0.3 \mathrm{~V} \text { maximum positive swing }
\end{aligned}
$$

No cutoff calculation for M_{5}; it is a constant-current source

We can (and should) do similar calculations for cutoff and knee voltage of M_{1}, and knee voltage of M_{4} to find the maximum voltage swing at the drain of M_{1}. The resulting answers must then be multiplied by the voltage gain of M_{5} to find the associated maximum output voltage swing.

Finding: M_{2}, M_{5} limits dominate: $+/-0.3 \mathrm{~V}$ maximum linear output swing.

note that the bias methonk is nat shown stages with cue. loads usudly have light gains and often caa only be properly biased or fart of a feedback amplifier

Active loads: constant current sources

```
output impedamer of QZ: 
```


$=1.04 \mathrm{mR}$
very large, mach larger flew Pee.
\Rightarrow Not om Model of Tomsitaut current source:

Active loads: constant current sources


```
S&<kG54 DEs is very large, co:l larger then
TEe, i" thws Etumple, it has little Ettisd upon
the gain.
    In combrast, lual a biksing resiston been lused, its
    Talas maxld haw been a Few kll i" ordsr
```


Constant-current loads allow
large stage voltage gains.

$$
\begin{aligned}
& \text { If } 12 \text { and Res are Gold } \rightarrow>\text { tee, then: } \\
& \frac{v_{0}}{v_{0}} \cong-\frac{n_{0}}{V_{\varepsilon}}=-\frac{V_{0} / I_{c}}{V_{-} / I_{e}}=\frac{-V_{A}}{V_{t}} \cong-4000 \quad \therefore \text { this cost }
\end{aligned}
$$

Darlington Pairs

In both cases g^{\prime} is used to furthe
increase the inpot impedance.

Darlington Pairs: Alternate and Common Form

Darlington Pairs: Alternate and Common Form

$$
\begin{aligned}
& \text { apply Ser } \\
& \text { then } \delta V_{E 1}=\delta V_{i n 1} \cdot \frac{P E E 1}{P_{E E 1} \cdot r_{e 1}}=\delta V_{i n 1} \cdot A_{\text {gl }} \\
& \delta I_{e 1}=\frac{\delta V_{E 1}}{\overrightarrow{P E E 1}}=\frac{\delta V_{\cdot n}}{\sqrt{e_{1}}+P_{E E 1}} \\
& \delta I_{C 2}=\frac{\delta V E 1}{P_{E E Z}+\sqrt{e} z}=\delta V_{i n} \cdot \frac{d W 1}{\text { EZ }+\sqrt{e z}} \\
& \delta I_{0 \Delta t}=\delta I_{c 1}+\delta I_{c z} \quad \delta V_{\text {out }}=-\delta I_{\text {oft }} \cdot T_{L} \\
& \frac{\delta V_{\text {out }}}{\delta V_{\text {in }}}=A N=-A_{V_{1}} \cdot \frac{R_{L}}{r_{e 2}+P_{E \in 2}}-\frac{P_{L}}{P_{E \in 1}+r_{e 1}}
\end{aligned}
$$

Answer is a bit more complex for finite β, finite $R_{C E}$.

Differential common-source stage

Starting point for comparison... (note the odd, asymmetric power supplies)

FETs:

$$
\begin{aligned}
& K_{\mu}=10 \mathrm{~mA} / \mathrm{V}^{2}\left(W_{g} / 1 \mu \mathrm{~m}\right) \\
& K_{v}=2 \mathrm{~mA} / \mathrm{V}\left(W_{g} / 1 \mu \mathrm{~m}\right) \\
& \Delta V=0.1 \mathrm{~V} \\
& V_{t h}= \pm 0.3 \mathrm{~V} \\
& 1 / \lambda=4 \mathrm{~V}
\end{aligned}
$$

DC bias design: setting $V_{g s}=0.4 \mathrm{~V}$ for all FETs
\rightarrow boundary of velocity- and mobility-limited regions.
For $Q_{1 A}: I_{D}=K_{\mu}\left(V_{g s}-V_{t h}\right)^{2}\left(1+\lambda V_{D S}\right)$
$0.1 \mathrm{~mA}=10 \mathrm{~mA} / \mathrm{V}^{2}\left(W_{g} / 1 \mu \mathrm{~m}\right)(0.1 \mathrm{~V})^{2}(1+0.4 \mathrm{~V} / 4 \mathrm{~V})$
$\rightarrow W_{g}=0.91 \mu \mathrm{~m}$
Similar calculation for all other FET widths

Differential gain

Small-signal analysis: differential mode

$$
\begin{aligned}
& \text { \& } \quad R_{D S 1}=1 / \lambda I_{D}=4 \mathrm{~V} / 0.1 \mathrm{~mA}=40 \mathrm{k} \Omega \\
& \text { Mobility-limited FET: } \\
& I_{D}=K_{\mu}\left(V_{g s}-V_{t h}\right)^{2}\left(1+\lambda V_{D S}\right) \\
& g_{m}=2 K_{\mu}\left(V_{g s}-V_{t h}\right)\left(1+\lambda V_{D S}\right) \\
& g_{m}=2 I_{D}\left(V_{g s}-V_{t h}\right) \text { only in mobility-limited case } \\
& g_{m}=2(0.1 \mathrm{~mA}) / 0.1 \mathrm{~V}=2 \mathrm{mS} \text {. } \\
& R_{\text {Leq1 }}=R_{D S 1}\left\|R_{D}=40 \mathrm{k} \Omega\right\| 4 \mathrm{k} \Omega=3.66 \mathrm{k} \Omega \\
& V_{o d} / V_{i d}=g_{m 1} R_{\text {Leq1 }}=2 \mathrm{mS}(3.66 \mathrm{k} \Omega)=7.27
\end{aligned}
$$

Differential Pair with Cascode

Transistors $Q_{2 A}$ and $Q_{2 B}$ have been added.

We've increased the positive supply to 0.8 V , and we've picked DC levels to keep

$$
V_{D S}=V_{g s}=0.4 \mathrm{~V} \text { for all transistors. }
$$

So: given that $I_{D}=K_{\mu}\left(V_{g s}-V_{t h}\right)^{2}\left(1+\lambda V_{D S}\right)$, we have the same FET widths as before

The load resistance is also unchanged

Differential Pair with Cascode

Small-signal analysis: differential mode

$$
\begin{array}{ll}
& \begin{array}{l}
Q_{2}: \text { common-gate } \\
R_{\text {Leq } 2}=R_{D}=4 \mathrm{k} \Omega
\end{array} \\
V_{\text {in } 2}=\left(1 / g_{m 2}\right)\left(1+R_{\text {Leq } 2} / R_{D S 2}\right) \\
& =500 \Omega(1+4 \mathrm{k} \Omega / 40 \mathrm{k} \Omega)=550 \Omega \\
A_{v 2}=R_{\text {Leq } 2} / R_{\text {in } 2}=4 \mathrm{k} \Omega / 550 \Omega=7.27 \\
V_{\text {out }}=-V_{\text {out }, d} / 2
\end{array}
$$

Total gain: common-source
$V_{\text {out }} / V_{\text {in }}=A_{v, \text { total }}=A_{v 1} A_{v 2}=-1.09 \cdot 7.27=-7.89$
but $V_{\text {out }}=-V_{\text {out }, d} / 2$ and $V_{\text {in }}=V_{\text {in }, d} / 2$ so $V_{\text {out }, d} / V_{\text {in }, d}=7.89$

Another way of calculating the gain

$$
\begin{gathered}
V_{\text {in }}=V_{i, d} / 20-R_{\text {in } 2}^{Q_{1}} R_{D S 1} \\
V_{\text {out }} / V_{\text {in }}=A_{v 1} A_{v 2}=-g_{m 1} R_{\text {Leq1 }}\left(\frac{R_{\text {Leq } 2}}{R_{\text {in } 2}}\right)=-g_{m 1}\left(\frac{R_{D S 1} R_{\text {in } 2}}{R_{D S 1}+R_{\text {in } 2}}\right)\left(\frac{R_{\text {Leq } 2}}{R_{\text {in } 2}}\right) \\
=-g_{\text {out }}\left(\frac{R_{D S 1}}{R_{D S 1}+R_{\text {in } 2}}\right) R_{\text {Leq } 2}
\end{gathered}
$$

Consider the currents

The output current of Q_{1} is current-divided between $R_{D S 1}$ and $R_{\text {in } 2}$, and then passes through Q_{2} to the load

Differential Pair with *Folded* Cascode

So: given that $I_{D}=K_{\mu}\left(V_{g s}-V_{t h}\right)^{2}\left(1+\lambda V_{D S}\right)$, we have the same FET widths as before

Folded Cascode:Differential Half-Circuit

Small-signal analysis: differential mode

Total gain: common-source
$V_{\text {out }} / V_{\text {in }}=A_{v, t o t a l}=A_{v 1} A_{v 2}$
but $V_{\text {out }}=-V_{\text {out }, d} / 2$ and $V_{\text {in }}=V_{\text {in, } d} / 2$ so $V_{\text {out }, d} / V_{\text {in }, d}=-A_{v 1} A_{v 2}$

$$
\begin{aligned}
& V_{\text {out }} / V_{\text {in }}=A_{v 1} A_{v 2}=-g_{m 1}\left(\frac{R_{D S 1} \| R_{D S 3}}{R_{D S 1} \| R_{D S 3}+R_{\text {in } 2}}\right) R_{\text {Leq } 2}
\end{aligned}
$$

The output current of Q_{1} is current-divided between $R_{D S 1} \| R_{D S 3}$ and $R_{i n 2}$, and then passes through Q_{2} to the load

Why use *folded* cascode?

In DC-coupled circuits, the DC ouput voltage of one stage is the DC input voltage of the next.

The PFET common-gate stages have shifted the DC levels to more negative voltages.

This can be useful in DC bias design.

Bipolar current mirror

We have $I_{C}=I_{S} \exp \left(V_{b e} / V_{T}\right) \rightleftarrows \quad{ }_{T} \ln \left(I_{C} / I_{S}\right)$
where $V_{T}=k T / q=26 \mathrm{mV} @ T=300 \mathrm{~K}$
$I_{S}=J_{S} A_{E}$
$A_{E}=$ emitter junction area
$J_{S}=$ emitter saturation current density $\left(\mathrm{A} / \mathrm{cm}^{2}\right)$.

Key points:

1) We will no longer blindly assume that $V_{b e} \cong 0.7 \mathrm{~V}$. Instead, $V_{b e}=V_{T} \ln \left(I_{C} / I_{S}\right)$.
2) I_{S} is proportional to the emitter junction area.

Bipolar current mirror

$$
\Sigma_{c 1} \cong\left(V_{c c}-V_{\text {been }}\right) / R_{1}=1 \text { mad } \rightarrow R_{1}=9.3 \mathrm{k} \Omega
$$

$$
\text { Note that Nor }=V_{\text {bes }}
$$

$$
\text { but } \Sigma_{c 1}=I_{51}\left(e^{V_{b e 1} 1 V_{T}}-1\right)
$$

$$
I_{C S}=I_{S 2}\left(e^{V_{\text {set }} / V_{T}}-1\right)
$$

$$
I_{c z}=\frac{\bar{I}_{s z}}{\bar{I}_{51}} \cdot I_{c 1}=\frac{A E_{2}}{A_{E_{1}}} I_{61}
$$

We cen set up a desired ratio of currents We can set up a desired ratio of currents by using transistors with a defined ratio of emitter areas

Effects of base currents

$$
\begin{aligned}
& I_{\text {Ret }}=\bar{Z}_{e 1}+2 Z_{e_{1}} / / 3 \\
& \Rightarrow Z_{<1}=\frac{\tau_{R_{e} t}}{1+2 / \beta}
\end{aligned}
$$

If base currents have too large an effect, then do this:

$$
\begin{aligned}
& I_{x}=2 I_{c 1} / \beta^{2} \\
& \Rightarrow \\
& I_{c 1}=\frac{I_{\text {Ret }}}{1+2 / \beta^{2}}
\end{aligned}
$$

Reducing current with a resistor (Widlar)

$$
\begin{aligned}
& V_{b e 1}=V_{T} \ln \left(I_{C 1} / I_{S 1}\right) \\
& V_{b e 2}=V_{T} \ln \left(I_{C 2} / I_{S 2}\right)
\end{aligned}
$$

But:

$$
\begin{aligned}
& V_{\text {be1 }}=V_{\text {be2 }}+I_{C 2} R \\
& V_{T} \ln \left(I_{C 1} / I_{S 1}\right)=V_{T} \ln \left(I_{C 2} / I_{S 2}\right)+I_{C 2} R \\
& V_{T} \ln \left(I_{C 1} I_{S 2} / I_{C 2} I_{S 1}\right)=I_{C 2} R
\end{aligned}
$$

$$
I_{C 2} R=V_{T} \ln \left(\frac{I_{C 1}}{I_{C 2}} \cdot \frac{I_{S 2}}{I_{S 1}}\right)=V_{T} \ln \left(\frac{I_{C 1}}{I_{C 2}} \cdot \frac{A_{E 2}}{A_{E 1}}\right)
$$

We can use a resistor to set up a desired current ratio

Textbooks frequently show mirrors without resistors.
Such designs are frequently *thermally unstable*.
Adding at least small resistors avoids this.
We will examine this in detail later.

Current Mirrors with resistors

$$
\begin{aligned}
& R_{C 1} \\
& \rightarrow V_{T} \ln \left(\frac{I_{E 1}}{I_{E 2}} \frac{I_{S 2}}{I_{S 1}}\right)=I_{E 2} R_{E 2}-I_{E 1} R_{E 1}=V_{b e 2}+I_{E 2} R_{E 2} \text { and: } V_{b e}=V_{T} \ln \left(I_{C} / I_{S}\right) \\
& V_{T 1} \ln \left(I_{E 1} / I_{S 1}\right)+I_{E 1} R_{E 1}=V_{T} \ln \left(I_{E 2} / I_{S 2}\right)+I_{E 2} R_{E 2}
\end{aligned}
$$

Even if $\left(I_{E 1} I_{S 2} / I_{E 2} I_{S 1}\right)$ were $3,(k T / q) \ln (10)$ is only 30 mV .
So, if we make the $I R$ drops $\gg 60 \mathrm{mV}$, then the currents tend to be controlled by the resistor ratios, not by the I_{S} ratios.

Push-pull output stage.

Q_{1} : diode-connected transistor, matched to Q_{2}.
Q_{3} : diode-connected transistor, matched to Q_{4}.
First do bias analysis: $V_{\text {in }}=V_{\text {out }}=0 \mathrm{~V}$.

$$
V_{b e 1}+V_{b e 3}=V_{b e 2}+V_{b e 4}+2 I_{E 2} R
$$

but:

$$
V_{b e}=V_{T} \ln \left(I_{C} / I_{S}\right)
$$

$$
\begin{aligned}
& V_{T} \ln \left(I_{E 1} / I_{S 1}\right)+V_{T} \ln \left(I_{E 3} / I_{S 3}\right)= \\
& \quad V_{T} \ln \left(I_{E 2} / I_{S 2}\right)+V_{T} \ln \left(I_{E 4} / I_{S 4}\right)+2 I_{E 2} R
\end{aligned}
$$

So: $V_{T} \ln \left(\frac{I_{E 2}^{2}}{I_{E 1}^{2}} \frac{I_{S 1} I_{S 3}}{I_{S 2} I_{S 4}}\right)=2 I_{E 2} R$
Assuming matching, i.e. $I_{S 1}=I_{S 3}, I_{S 2}=I_{S 4}: \rightarrow V_{T} \cdot \ln \left(I_{E 2} / I_{E 1}\right)=I_{E 2} R$

$$
V_{T} \cdot \ln \left(I_{E 2} / I_{E 1}\right)=I_{E 2} R
$$

Push-pull output stage.

$$
V_{T} \cdot \ln \left(I_{E 2} / I_{E 1}\right)=I_{E 2} R
$$

$$
V_{T} \cdot \ln \left(I_{E 2} / I_{E 1}\right)=I_{E 2} R
$$

DC bias analysis is same as for current mirror

Push-pull output stage: AC operation

Approximately greatly: we just seek understanding
(1) Ignore emitter resistors.
(2) replace R_{B} with current source, set $\beta=\infty$.

The latter forces $I_{E 1}=I_{E 3}$ even under AC operation

$$
V_{b e 1}+V_{b e 3}=V_{b e 2}+V_{b e 4}
$$

$$
V_{T} \ln \left(I_{E 1} / I_{S 1}\right)+V_{T} \ln \left(I_{E 3} / I_{S 3}\right)=V_{T} \ln \left(I_{E 2} / I_{S 2}\right)+V_{T} \ln \left(I_{E 4} / I_{S 4}\right)
$$

$$
\rightarrow I_{E 1} I_{E 3} / I_{S 1} I_{S 3}=I_{E 2} I_{E 4} / I_{S 2} I_{S 4}
$$

$$
\text { but: } I_{S 1}=I_{S 2}, I_{S 3}=I_{S 4}, I_{E 1}=I_{E 3} \text {, so: } I_{E 2} I_{E 4}=I_{E 1}^{2}
$$

$$
I_{E 2} I_{E 4}=I_{E 1}^{2} . \quad \text { But } I_{\text {out }}=V_{\text {out }} / R_{L}=I_{E 2}-I_{E 4}
$$

Strong positive output $\left(I_{o u t} \gg I_{E 1}\right)$: \quad Strong negative output $\left(-I_{o u t} \gg I_{E 1}\right)$:
$I_{o u t}=I_{E 2}-I_{E 4}=I_{E 2}-I_{E 1}^{2} / I_{E 2}$.
$I_{o u t}=I_{E 2}-I_{E 4}=I_{E 1}^{2} / I_{E 4 .}-I_{E 4}$
$\rightarrow I_{E 2} \cong I_{\text {out }}$ and $I_{E 4} \cong I_{E 1}^{2} / I_{\text {out }}$
$\rightarrow Q_{2}$ carries the output current and Q_{4} is almost off
$\rightarrow I_{E 4} \cong-I_{\text {out }}$ and $I_{E 4} \cong I_{E 1}^{2} /\left(-I_{\text {out }}\right)$
$\rightarrow Q_{4}$ carries the output current and Q_{2} is almost off

Push-pull waveforms

Sketch of the current waveforms:

The positive transistor carries the positive output current

The negative transistor carries the negative output current

Benefit of push-pull output stage:
No clipping limit due to cutoff
\rightarrow No need for large bias current even if stage must deliver large output current.

Thermal instabilty: mirrors and push-pull stages

Mirrors and push-pull stages are prone to thermal instability The analysis is the same for the two circuits

Thermal instabilty: mirrors and push-pull stages

$+V_{C C}$	This equivalent circuit will model both problems The problem: $V_{b e}$ decreases with junction temperature
	\rightarrow increased junction temperature

Current can increase without limit
Can lead to transistor self-destruction

Thermal instabilty: definition of terms

$$
\begin{aligned}
& +V_{C C} \\
& \frac{d T}{d P}=\text { Thermal resistance }=\theta_{J A}=\theta_{J C}+\theta_{C H}+\theta_{H A} \\
& \theta_{J A}=\text { Junction-to-ambient thermal resistance } \\
& \theta_{J C}=\text { Junction-to-case thermal resistance } \\
& \theta_{C H}=\text { case-to-heatsink thermal resistance } \\
& \theta_{H A}=\text { heatsink-to-ambient thermal resistance } \\
& P=I_{E} V_{C C}=\text { Device power dissipation }
\end{aligned}
$$

Thermal instabilty: analysis

$$
\begin{aligned}
& +V_{C C} \\
& I_{E Q}
\end{aligned} \begin{aligned}
& \text { Assume a infinitesimal change in temperature } \delta T \\
& \delta V_{b e}=-\left.\frac{d V_{b e}}{d T}\right|_{I_{C}} \\
& \delta T \\
& \delta I_{E}=\left(-\delta V_{b e}\right) /\left(R_{E}+1 / g_{m}\right) \\
& \delta P=V_{C C} \cdot \delta I_{E} \\
& \delta T=\theta_{J A} \cdot \delta P \longrightarrow
\end{aligned}
$$

The series $1+x+x^{2}+x^{3}+\ldots$. diverges if $|x|>1$
So, to be thermally stable, we must have $K_{\text {themal }}<1$,
where $K_{\text {thermal }}=\left(\left.\frac{-d V_{b e}}{d T}\right|_{I_{C}}\right) \frac{V_{C C} \theta_{J A}}{R_{E}+1 / g_{m}}$
We need either a good heatsink, significant emitter resistance, or both.

