
50 MHz Plastic Fiber Optic Red LED

APPLICATIONS

- ► PC-to-Peripheral Data Links
- ► Motor Controller Triggering
- ➤ Local Area Networks
- Medical Instruments
- ➤ Automotive Electronics
- ► Digitized Video
- ► Electronic Games
- ► Robotics Communications
- Isolation from Lightning and Voltage Transients

DESCRIPTION

The IF-E98 is a high-speed red LED housed in a "connector-less" style plastic fiber optic package. The output spectrum of the IF-E98 is produced by a GaAlAs die that peaks at a wavelength of 650 nm, one of the optimal transmission windows of PMMA plastic optical fiber. The device package features an internal micro-lens and a precision-molded PBT housing to ensure efficient optical coupling into standard 1000 μ m core plastic fiber cable.

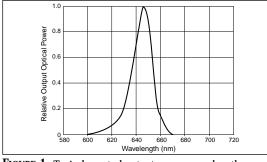
APPLICATION HIGHLIGHTS

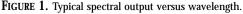
The fast transition times of the IF-E98 make it suitable for medium-speed analog and digital data links. Link distances in excess of 75 meters at data rates of 50 Mbps are possible using standard 1000 μ m core plastic fiber when matched to an IF-D97 photologic detector. The drive circuit is simpler than required for laser diodes, making the IF-E98 a good low-cost alternative in a variety of analog and digital applications.

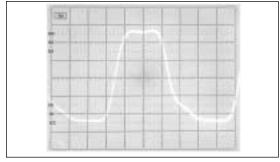
FEATURES

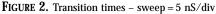
- ◆ No Optical Design Required
- ♦ Mates with Standard 1000 µm Core Jacketed Plastic Fiber Cable
- ◆ Internal Micro-lens for Efficient Coupling
- Inexpensive Plastic Connector Housing
- Connector-Less Fiber Termination and Connection
- ◆ Interference-Free Transmission from Light-Tight Housing
- ♦ Excellent Linearity
- Visible Light Output

MAXIMUM RATINGS


 $(T_A = 25^{\circ}C)$


CHARACTERISTICS (T_A=25°C)


Parameter	Symbol	Min.	Тур.	Max.	Unit
Peak Wavelength	λ _{PEAK}	640	650	660	nm
Spectral Bandwidth (50% of I _{MAX})	Δλ	-	20	-	nm
Output Power Coupled into Plastic Fiber (1 mm core diameter). Lens to Fiber Distance ≤ 0.1 mm, 10 cm polished fiber, I _F =20 mA	Φ_{min}	275 -5.6	350 -4.6	425 -3.7	μW dBm
Switching Times (10% to 90% and 90% to 10%) ($R_L{=}47~\Omega,~I_F{=}30~mA)$	t _r , t _f	_	-	8	ns
Forward Voltage (I _F =20 mA)	V _f	-	1.9	2.3	V


IF-E98

50 MHz Plastic Fiber Optic Red LED

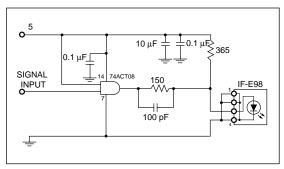


FIGURE 3. Typical interface circuit. ($I_F = 30 \text{ mA}$)

FIBER TERMINATION INSTRUCTIONS

- 1. Cut off the ends of the optical fiber with a singleedge razor blade or sharp knife. Try to obtain a precise 90-degree angle (square).
- 2. Insert the fiber through the locking nut and into the connector until the core tip seats against the internal micro-lens.
- 3. Screw the connector locking nut down to a snug fit, locking the fiber in place.

FIGURE 4. Case outline.