Mid-Term Exam, ECE-137B

May 12, 2006

Closed-Book Exam

There are 2 problems on this exam, and you have 50 minutes.

1) show all work. Full credit will not be given for correct answers if supporting work is not shown.
2) please write answers in provided blanks
3) Don't Panic !
4) $137 \mathrm{a}, 137 \mathrm{~b}$ crib sheets, and 2 pages personal sheets permitted.

Do not turn over the cover page until requested to do so.

Name:

Use any and all reasonable approximations. 5% accuracy is fine if the method is correct.

Time function	LaPlace Transform
$\delta(\mathrm{t})$	1
$\mathrm{U}(\mathrm{t})$	$1 / \mathrm{s}$
$\mathrm{e}^{-\alpha \mathrm{t}} \mathrm{U}(\mathrm{t})$	$\frac{1}{\mathrm{~s}+\alpha}$
$\mathrm{e}^{-\alpha \mathrm{t}} \cos \left(\omega_{\mathrm{d}} \mathrm{t}\right) \mathrm{U}(\mathrm{t})$	$\frac{\mathrm{s}+\alpha}{(\mathrm{s}+\alpha)^{2}+\omega_{\mathrm{d}}^{2}}$
$\mathrm{e}^{-\alpha \mathrm{t}} \sin \left(\omega_{\mathrm{d}} \mathrm{t}\right) \mathrm{U}(\mathrm{t})$	$\frac{\omega_{\mathrm{d}}}{(\mathrm{s}+\alpha)^{2}+\omega_{\mathrm{d}}^{2}}$

Problem	Points Received	Points Possible
1a		25
1b		25
1c		50
total		100

Problem 1, 100 points

The DC output voltage is to be zero volts---Rdd1 is set accordingly
Cin is an AC short-circuit at all frequencies of interest.

Part a, 25 points

Find the following
Rdd1=
DC voltage at the drain of $\mathrm{Q} 1=$
$C_{g d}$ of $\mathrm{Q} 1=$ $C_{g s}$ of $\mathrm{Q1}=$ $C_{g d}$ of $\mathrm{Q} 2=\ldots C_{g s}$ of $\mathrm{Q} 2=$

Part b, 25 points

Mid Band Analysis:
Find the mid-band small signal voltage gain of Q2 (the small signal voltage at the source of Q2 divided by the small signal voltage at the gate of Q2)

Av2= \qquad
Find the mid-band small signal voltage gain of Q1 (the small signal voltage at the drain of Q1 divided by the small signal voltage at the source of Q1)

Av1= \qquad
Find Vin/Vgen
Vin/Vgen=

Part c:50 points
The circuit has 3 poles and one zero in its transfer function.
Give the frequencies of these in Hz :
$f_{p 1}=$ \qquad , $f_{p 2}=$
$f_{p 3}=$ \qquad $f_{z}=$

