Mid-Term Exam, ECE-137B

May 12, 2006

Closed-Book Exam

There are 2 problems on this exam, and you have 50 minutes.

- 1) show all work. Full credit will not be given for correct answers if supporting work is not shown.
- 2) please write answers in provided blanks
- 3) Don't Panic!
- 4) 137a, 137b crib sheets, and 2 pages personal sheets permitted.

Do not turn over the cover page until requested to do so.

Name:			

Use any and all reasonable approximations. 5% accuracy is fine if the method is correct.

Time function	LaPlace Transform
$\delta(t)$	1
U(t)	1/s
$e^{-\alpha t}U(t)$	_1
	$s + \alpha$
$e^{-\alpha t}\cos(\omega_{d}t)U(t)$	$\frac{s+\alpha}{\left(s+\alpha\right)^2+\omega_d^2}$
$e^{-\alpha t}\sin(\omega_d t)U(t)$	$\frac{\omega_{\rm d}}{\left(s+\alpha\right)^2+\omega_{\rm d}^2}$

Problem	Points Received	Points Possible
1a		25
1b		25
1c		50
total		100

Problem 1, 100 points

The supplies are +/- 5 Volts

Q1: $|V_{th}|$ =0.5 Volt, $v_{sat}C_{ox}W_g$ =5 mA/V, lambda=0, C_{gd} = C_{gs} /5. f_{τ} =80 GHz

Q2: $|V_{th}|$ =0.5 Volt, $v_{sat}C_{ox}W_g$ =4 mA/V, lambda=0, C_{gd} = C_{gs} /5. f_{τ} =80 GHz

Rgen=200 Ohm. RL=5 kOhm Iss1=Iss2=1 mA

The DC output voltage is to be zero volts---Rdd1 is set accordingly Cin is an AC short-circuit at all frequencies of interest.

2

Part a, 25 points

Find the following

Rdd1=______ DC voltage at the drain of Q1=_______ C_{gd} of Q1=______ C_{gs} of Q1=______ C_{gs} of Q2=______

Part b, 25 points

Mid Band Analysis: Find the mid-band small signal voltage gain of Q2 (the small signal voltage at the source of Q2 divided by the small signal voltage at the gate of Q2)
Av2=
Find the mid-band small signal voltage gain of Q1 (the small signal voltage at the drain of Q1 divided by the small signal voltage at the source of Q1)
Av1=
Find Vin/Vgen
Vin/Vgen=

5

Part c:50 points
The circuit has 3 poles and one zero in its transfer function.
Give the frequencies of these in Hz: