# Mid-Term Exam, ECE-137B 

MONDAY May 14, 2007

## Closed-Book Exam

There are 2 problems on this exam, and you have 50 minutes.

1) show all work. Full credit will not be given for correct answers if supporting work is not shown.
2) please write answers in provided blanks
3) Don't Panic !
4) $137 \mathrm{a}, 137 \mathrm{~b}$ crib sheets, and 2 pages personal sheets permitted.

## Do not turn over the cover page until requested to do so.

Name:

Use any and all reasonable approximations. $5 \%$ accuracy is fine if the method is correct.

| Time function | LaPlace Transform |
| :--- | :--- |
| $\delta(\mathrm{t})$ | 1 |
| $\mathrm{U}(\mathrm{t})$ | $1 / \mathrm{s}$ |
| $\mathrm{e}^{-\alpha t} \mathrm{U}(\mathrm{t})$ | $\frac{1}{\mathrm{~s}+\alpha}$ |
| $\mathrm{e}^{-\alpha \mathrm{t}} \cos \left(\omega_{\mathrm{d}} \mathrm{t}\right) \mathrm{U}(\mathrm{t})$ | $\frac{\mathrm{s}+\alpha}{(\mathrm{s}+\alpha)^{2}+\omega_{\mathrm{d}}^{2}}$ |
| $\mathrm{e}^{-\alpha \mathrm{t}} \sin \left(\omega_{\mathrm{d}} \mathrm{t}\right) \mathrm{U}(\mathrm{t})$ | $\frac{\omega_{\mathrm{d}}}{(\mathrm{s}+\alpha)^{2}+\omega_{\mathrm{d}}^{2}}$ |


| Problem | Points Received | Points Possible |
| :--- | :--- | :--- |
| 1 a |  | 10 |
| 1 b |  | 10 |
| 1 c |  | 20 |
| 1 d |  | 20 |
| 1 e |  | 10 |
| 2 a |  | 10 |
| 2 b |  | 10 |
| 2c |  | 10 |
| total |  | 100 |

## Problem 1, 70 points

|  | The supplies are +/- 2 Volts $\begin{aligned} & \mathrm{Q} 1:\left\|V_{t h}\right\|=0.3 \mathrm{Volt}, \\ & v_{\text {sat }} C_{o x} W_{g}=10 \mathrm{~mA} / \mathrm{V}, \\ & \text { lambda }=0, C_{g s}=10 \mathrm{fF}, \\ & C_{g d}=0 \mathrm{fF} \\ & \mathrm{Q} 2: \beta=\infty, \tau_{f}=0.5 \mathrm{ps}, \\ & C_{j e}=5 \mathrm{fF}, C_{c b}=10 \mathrm{fF}, \\ & V_{A}=\infty \text { Volts } \\ & \text { Rgen }=100 \mathrm{kOhm} . \\ & \mathrm{RL}=100 \mathrm{Ohm} \\ & \mathrm{Ie} 2=1 \mathrm{~mA} \\ & \operatorname{Rg} 1=1 \mathrm{MOhm} \end{aligned}$ |
| :---: | :---: |
| The DC drain voltage of Q 1 is to be 1 volts. The DC drain current of Q1 is to be 5 mA . Cin and Cout are AC short-circuits at all frequencies of NOT TREAT THEM AS CAPACITORS in an MOTC a | terest---THEREFORE DO alysis. |

Part a, 10 points
Find the following

$$
\begin{aligned}
& \mathrm{Rg} 2= \\
& \left(C_{j e}+\beth_{\text {diff }}\right) \text { of } \mathrm{Q} 2= \\
& \mathrm{Rd} 1=
\end{aligned}
$$

## Part b, 10 points

Mid Band Analysis:
Find the mid-band small signal voltage gain of Q2 (the small signal voltage at the emitter of Q2 divided by the small signal voltage at the base of Q2)

Av2= $\qquad$
Find the mid-band small signal voltage gain of Q1 (the small signal voltage at the drain of Q1 divided by the small signal voltage at the gate of Q1)

Av1= $\qquad$
Find Vin/Vgen
Vin/Vgen=

Part c: 20 points
USING MOTC, you will find the two dominant pole frequencies of the transfer function. Give the frequencies of these in Hz :

Component of a1 due to $C_{g s}$ of transistor $\mathrm{Q} 1=$ $\qquad$ seconds.
Component of a1 due to $C_{c b}$ of transistor $\mathrm{Q} 2=$ $\qquad$ seconds.
Component of a1 due to $\left(C_{j e}+\tau_{\text {diff }}\right)$ of transistor $\mathrm{Q} 2=$ seconds. a1 = $\qquad$ seconds.

Part d: 20 points
Component of a2 due to $C_{g s 1}$ and $C_{c b 2}=$ $\qquad$ seconds ${ }^{2}$.
Component of a2 due to $C_{g s 1}$ and $\left(C_{j e}+\tau_{d i f f}\right)=$ $\qquad$ seconds ${ }^{2}$.
Component of a2 due to $C_{c b 2}$ and $\left(C_{j e}+\tau_{d i f f}\right)=$ $\qquad$ seconds ${ }^{2}$.
$\mathrm{a} 2=$ $\qquad$ seconds ${ }^{2}$
$f_{p 1}=$ $\qquad$ , $f_{p 2}=$

Part e: 10 points
The circuit has 2 zeros its transfer function.
Give the frequencies of these in Hz :
$f_{z 1}=$
$f_{z 2}=$

## Problem 2, 30 points

Part a 10 points


Part b, 10 points
USING NODAL ANALYSIS, compute Vout(s)/Vgen(s) in ratio-of-polynomials form:
$\frac{V_{\text {out }}(s)}{V_{\text {gen }}(s)}=\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{\text {mid-band }} \times \frac{{ }^{1}+b_{1} s+b_{2} s^{2}+. .}{1+a_{1} s+a_{2} s^{2}+. .}=$

Part c, 10 points
$g m=100 \mathrm{mS} . \mathrm{RL}=1 \mathrm{kOhm} . \mathrm{Le}=1 \mathrm{nH}$
Find the frequencies of any zeros (there may be zero, one or two present ) in the transfer function:
$f_{z 1}=$ $\qquad$ , $f_{z 2}=$ $\qquad$ , ....

There may be either 1 or 2 poles of the transfer function.
If the poles are real, give the 1 or 2 pole frequencies in Hz :
$f_{p 1}=$ $\qquad$ , $f_{p 2}=$ $\qquad$

If there are 2 poles, and they are complex, give $f_{n}=o_{n} / 2 \pi$ and the damping factor $\zeta$ : $f_{n}=o_{n} / 2 \pi=$ $\qquad$ , $\zeta=$ $\qquad$

