Mid-Term Exam, ECE-137B

MONDAY May 14, 2007

Closed-Book Exam

There are 2 problems on this exam, and you have 50 minutes.

- 1) show all work. Full credit will not be given for correct answers if supporting work is not shown.
- 2) please write answers in provided blanks
- 3) Don't Panic!
- 4) 137a, 137b crib sheets, and 2 pages personal sheets permitted.

Do not turn over the cover page until requested to do so.

Name:						
Use an	y and all reason	able approxin	nations. 5% a	accuracy is fin	e if the metho	d is correct.

Time function	LaPlace Transform
$\delta(t)$	1
U(t)	1/s
$e^{-\alpha t}U(t)$	1
	$s + \alpha$
$e^{-\alpha t}\cos(\omega_{d}t)U(t)$	$\frac{s+\alpha}{\left(s+\alpha\right)^2+\omega_d^2}$
$e^{-\alpha t}\sin(\omega_d t)U(t)$	$\frac{\omega_{\rm d}}{\left({\rm s}+\alpha\right)^2+\omega_{\rm d}^2}$

Problem	Points Received	Points Possible
1a		10
1b		10
1c		20
1d		20
1e		10
2a		10
2b		10
2c		10
total		100

1

Problem 1, 70 points

The supplies are +/- 2 Volts

Q1: $|V_{th}|$ =0.3 Volt, $v_{sat}C_{ox}W_g$ =10 mA/V, lambda=0, C_{gs} =10 fF, C_{gd} = 0 fF

Q2: $\beta = \infty$, $\tau_f = 0.5$ ps, $C_{je} = 5$ fF, $C_{cb} = 10$ fF, $V_A = \infty$ Volts

Rgen=100 kOhm. RL=100 Ohm Ie2=1 mA Rg1=1 MOhm

The DC drain voltage of Q1 is to be 1 volts.

The DC drain current of Q1 is to be 5 mA.

Cin and Cout are AC short-circuits at all frequencies of interest---THEREFORE DO NOT TREAT THEM AS CAPACITORS in an MOTC analysis.

Part a, 10 points

Find the following

$$Rg2=$$
 $Rd1=$ $C_{je} + C_{diff}$ of $Q2=$

Part b, 10 points

Mid Band Analysis: Find the mid-band small signal voltage gain of Q2 (the small signal voltage at the emitter of Q2 divided by the small signal voltage at the base of Q2)
Av2=
Find the mid-band small signal voltage gain of Q1 (the small signal voltage at the drain of Q1 divided by the small signal voltage at the gate of Q1)
$Av1 = \underline{\hspace{1cm}}$
Find Vin/Vgen
Vin/Vgen=

<u>Part c: 20 points</u>
USING MOTC, you will find the two dominant pole frequencies of the transfer function. Give the frequencies of these in Hz:

Component of a	al due to C_{gs} of transistor Q1 =	seconds.
Component of a	al due to C_{cb} of transistor Q2 =	seconds.
Component of a	al due to $(C_{je} + C_{diff})$ of transistor Q2 =	seconds.
a1 =	seconds.	

8 в

Part d: 20 points

11 в

Part e: 10 points
The circuit has 2 zeros its transfer function.
Give the frequencies of these in Hz:

$$f_{z1} = \underline{\qquad \qquad}$$

$$f_{z2} = \underline{\qquad \qquad}$$

Problem 2, 30 points

Part a 10 points

Small signal analysis.
Ignore the DC bias; you don't need it.

The FET has lambda=0 hence Gds=0. Also, Cgs =Cgd=0 fF

Replacing the transistor with its high frequency small-signal model, draw a small-signal equivalent circuit diagram.

Part b, 10 points

USING NODAL ANALYSIS, compute Vout(s)/Vgen(s) in ratio-of-polynomials form:

$$\frac{V_{out}(s)}{V_{gen}(s)} = \frac{V_{out}}{V_{gen}}\Big|_{mid-band} \times \frac{1 + b_1 s + b_2 s^2 + \dots}{1 + a_1 s + a_2 s^2 + \dots} = \underline{\hspace{2cm}}$$

Part c, 10 points

gm= 100 mS. RL=1 kOhm. Le= 1 nH

Find the frequencies of any zeros (there may be zero, one or two present) in the transfer function:

There may be either 1 or 2 poles of the transfer function.

If the poles are real, give the 1 or 2 pole frequencies in Hz:

If there are 2 poles, and they are complex, give $f_n = v_n/2\pi$ and the damping factor ζ :

$$f_n = v_n / 2\pi = \underline{\hspace{1cm}}, \zeta = \underline{\hspace{1cm}}$$