Mid-Term Exam, ECE-137B

Tuesday, April 28, 2015

Closed-Book Exam

There are 2 problems on this exam, and you have 75minutes.

- 1) show all work. Full credit will not be given for correct answers if supporting work is not shown.
- 2) please write answers in provided blanks
- 3) Don't Panic!
- 4) 137a, 137b crib sheets, and 2 pages personal sheets permitted.

Use any, all reasonable approximations. 5% accuracy is fine if the method is correct.

Do not turn over the cover page until requested to do so.

Name:	

Time function	LaPlace Transform
$\delta(t)$	1
U(t)	1/s
$e^{-at}U(t)$	
	$s + \alpha$
$e^{-\alpha t} \cos(\omega_d t) U(t)$	$\frac{s+\alpha}{2}$
	$(s+\alpha)^2+\omega_d^2$
$e^{-\alpha t}\sin(\omega_{d}t)U(t)$	$\frac{\omega_{\rm d}}{2}$
	$(s+\alpha)^2+\omega_d^2$

Problem	Points Received	Points Possible
1a		6
1b		8
1c		8
1d		14
1e		14
1f		10
2a		10
2b		10
2c		10
2d		10
total		100

1

Problem 1, 60 points

Q1 has 1.0 nm oxide thickness, ε_r =3.8, 22 nm gate length, and a 0.2 V threshold. Mobility is 400 cm^2/(V-s), saturation drift velocity is 1E7 cm/s, λ = 0 Volts⁻¹, $C_{gs} = \varepsilon_r \varepsilon_{ox} L_g W_g / T_{ox} + (0.5 \mathrm{fF} / \mu \mathrm{m}) \cdot W_g$ and $C_{gd} = (0.5 \mathrm{fF} / \mu \mathrm{m}) \cdot W_g$. Hints:

$$\overline{\varepsilon_r \varepsilon_{ox}} / T_{ox} = 3.36 \cdot 10^{-2} \,\text{F/m}^2, \ (\mu c_{ox} W_g / 2L_g) = (3.06 \cdot 10^{-2} \,\text{A/V}^2) \cdot (W_g / 1\mu\text{m})
(c_{ox} V_{sat} W_g) = (3.36 \cdot 10^{-3} \,\text{A/V}^1) \cdot (W_g / 1\mu\text{m}), \ (v_{sat} L_g / \mu) = 55 \,\text{mV}.$$

The power supplies are +2V and -2V. The drain currents of Q1 is 1mA. V_{gs} of Q1 is 0.24 V. The drain of Q1 is at +1.0V.

$$R_{gen}$$
=500hm. R_L =3· R_D
 C_{in} =1 nF, C_{out} = 2 nF

b

Part a, 6 points

Find the following:

 R_{ss} = _____ R_D = _____ R_I = _____

Draw all DC node voltages on the circuit diagram below.

b

Part b, 8 points small-signal parameters Find the following

$C_{gs} = $	$C_{gd} =$
g _m =	$f_{\tau} =$

Part c: 8 points	
Mid Band Analysis:	
Find the following:	
$R_{in,Amplifier} = $	$R_{L,eq} =$
V $/V$ =	V. $/V$ =

Part d: 14 points

High-Frequency Analysis:

Find the frequencies, in Hz, of the two poles limiting the high-frequency response of the amplifier. Show your analysis (do not simply state that the input pole of a common-gate amplifier is approximately at f_{τ})

Part e: 14 points

Low-Frequency Analysis:
Find the frequencies, in Hz, of the two poles limiting the low-frequency response of the amplifier. Show your analysis.

11 в

Part f: 10 points

Draw a clean asymptotic Bode Magnitude plot of $V_{\it out}/V_{\it gen}$ as a function of frequency in Hz. Be sure to label and dimension the axes clearly, label pole and zero frequencies and gain slopes. Be sure to use the semi-log paper correctly

Problem 2, 40 points

Part a 10 points

Small signal analysis. Ignore the DC bias; you don't need it.

The FET has lambda=0 hence Gds=0. Also, Cgs =Cgd=0 fF

Replacing the transistor with its high frequency small-signal model, draw a small-signal equivalent circuit diagram.

Part b, 10 points

USING NODAL ANALYSIS, compute Vout(s)/Vgen(s) in ratio-of-polynomials form:

$$\frac{V_{out}(s)}{V_{gen}(s)} = \frac{V_{out}}{V_{gen}}\Big|_{mid-band} \times (s\tau)^m \times \frac{1 + b_1 s + b_2 s^2 + \dots}{1 + a_1 s + a_2 s^2 + \dots} = \underline{\hspace{2cm}}$$

here m, an integer, can be positive or negative or zero

Part c, 10 points

$$g_m = 10 \text{ mS}.$$
 $R_1 = 1 \text{ kOhm}, C_1 = 1 \text{ pF}, C_2 = 2 \text{ pF}$

Find the frequencies of any zeros (there may be zero, one or two present) in the transfer function:

$$f_{z1} =$$
________, $f_{z2} =$ ________,

There may be either 1 or 2 poles of the transfer function.

If the poles are real, give the 1 or 2 pole frequencies in Hz:

If there are 2 poles, and they are complex, give $f_n = \omega_n / 2\pi$ and the damping factor ζ :

Part d, 10 points

If Vin(t) is a 100mV step-function, find and plot Vout(t). Be sure to label and dimension the axes clearly, and to clearly label key features of the time waveform.

