Mid-Term Exam, ECE-137B

Tuesday, April 28, 2015

Closed-Book Exam

There are 2 problems on this exam, and you have 75 minutes.

1) show all work. Full credit will not be given for correct answers if supporting work is not shown.
2) please write answers in provided blanks
3) Don't Panic !
4) $137 \mathrm{a}, 137 \mathrm{~b}$ crib sheets, and 2 pages personal sheets permitted.

Use any, all reasonable approximations. 5% accuracy is fine if the method is correct.

Do not turn over the cover page until requested to do

so.

Name: \qquad

Time function	LaPlace Transform
$\delta(\mathrm{t})$	1
$\mathrm{U}(\mathrm{t})$	$1 / \mathrm{s}$
$\mathrm{e}^{-\alpha t} \mathrm{U}(\mathrm{t})$	$\frac{1}{\mathrm{~s}+\alpha}$
$\mathrm{e}^{-\alpha \mathrm{t}} \cos \left(\omega_{\mathrm{d}} \mathrm{t}\right) \mathrm{U}(\mathrm{t})$	$\frac{\mathrm{s}+\alpha}{(\mathrm{s}+\alpha)^{2}+\omega_{\mathrm{d}}^{2}}$
$\mathrm{e}^{-\alpha \mathrm{t}} \sin \left(\omega_{\mathrm{d}} \mathrm{t}\right) \mathrm{U}(\mathrm{t})$	$\frac{\omega_{\mathrm{d}}}{(\mathrm{s}+\alpha)^{2}+\omega_{\mathrm{d}}^{2}}$

Problem	Points Received	Points Possible
1a		6
1b		8
1c		8
1d		14
1e		14
1f		10
2a		10
2b		10
2c		10
2d		10
total	100	

Problem 1, 60 points

Q1 has 1.0 nm oxide thickness, $\varepsilon_{r}=3.8,22 \mathrm{~nm}$ gate length, and a 0.2 V threshold. Mobility is $400 \mathrm{~cm}^{\wedge} 2 /(\mathrm{V}-\mathrm{s})$, saturation drift velocity is $1 \mathrm{E} 7 \mathrm{~cm} / \mathrm{s}, \lambda=0$ Volts $^{-1}$, $C_{g s}=\varepsilon_{r} \varepsilon_{o x} L_{g} W_{g} / T_{o x}+(0.5 \mathrm{fF} / \mu \mathrm{m}) \cdot W_{g}$ and $C_{g d}=(0.5 \mathrm{fF} / \mu \mathrm{m}) \cdot W_{g}$.
Hints:

$$
\begin{aligned}
& \varepsilon_{r} \varepsilon_{o x} / T_{o x}=3.36 \cdot 10^{-2} \mathrm{~F} / \mathrm{m}^{2},\left(\mu c_{o x} W_{g} / 2 L_{g}\right)=\left(3.06 \cdot 10^{-2} \mathrm{~A} / \mathrm{V}^{2}\right) \cdot\left(W_{g} / 1 \mu \mathrm{~m}\right) \\
& \left(c_{o x} v_{s a t} W_{g}\right)=\left(3.36 \cdot 10^{-3} \mathrm{~A} / \mathrm{V}^{1}\right) \cdot\left(W_{g} / 1 \mu \mathrm{~m}\right),\left(v_{s a t} L_{g} / \mu\right)=55 \mathrm{mV} .
\end{aligned}
$$

The power supplies are +2 V and -2 V . The drain currents of Q 1 is 1 mA .
$V_{g s}$ of Q 1 is 0.24 V . The drain of Q 1 is at +1.0 V .
$R_{g e n}=50 \mathrm{Ohm} . R_{L}=3 \cdot R_{D}$
$C_{\text {in }}=1 \mathrm{nF}, C_{\text {out }}=2 \mathrm{nF}$

Part a, 6 points
Find the following:
$R_{s s}=$

$$
R_{D}=
$$

Draw all DC node voltages on the circuit diagram below.

Part b, 8 points
small-signal parameters
Find the following
$\begin{array}{ll}C_{g s}= & C_{g d}= \\ g_{m}= & f_{\tau}=\end{array}$

Part c: 8 points
Mid Band Analysis:
Find the following:

$$
\begin{array}{ll}
R_{\text {in }, \text { Amplifier }}= & R_{L, e q}= \\
V_{\text {out }} / V_{\text {in }}= & V_{\text {in }} / V_{\text {gen }}=
\end{array}
$$

Part d: 14 points

High-Frequency Analysis:
Find the frequencies, in Hz , of the two poles limiting the high-frequency response of the amplifier. Show your analysis (do not simply state that the input pole of a common-gate amplifier is approximately at f_{τ})
$f_{p 1, H F}=\longrightarrow \quad f_{p 2, H F}=$ \qquad .

Part e: 14 points
Low-Frequency Analysis:
Find the frequencies, in Hz , of the two poles limiting the low-frequency response of the amplifier. Show your analysis.

$$
f_{p 1, L F}=\quad f_{p 2, L F}=
$$

Part f: 10 points

Draw a clean asymptotic Bode Magnitude plot of $V_{\text {out }} / V_{\text {gen }}$ as a function of frequency in
Hz . Be sure to label and dimension the axes clearly, label pole and zero frequencies and gain slopes. Be sure to use the semi-log paper correctly

Problem 2, 40 points

Part a 10 points

Part b, 10 points
USING NODAL ANALYSIS, compute Vout(s)/Vgen(s) in ratio-of-polynomials form:
$\frac{V_{\text {out }}(s)}{V_{\text {gen }}(s)}=\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{\text {mid-band }} \times(s \tau)^{m} \times \frac{1+b_{1} s+b_{2} s^{2}+\ldots}{1+a_{1} s+a_{2} s^{2}+\ldots}=$
here m, an integer, can be positive or negative or zero

Part c, 10 points
$g_{m}=10 \mathrm{mS} . \quad R_{1}=1 \mathrm{kOhm}, C_{1}=1 \mathrm{pF}, C_{2}=2 \mathrm{pF}$

Find the frequencies of any zeros (there may be zero, one or two present) in the transfer function:
$f_{z 1}=$ \qquad , $f_{z 2}=$ \qquad ,

There may be either 1 or 2 poles of the transfer function.
If the poles are real, give the 1 or 2 pole frequencies in Hz :
$f_{p 1}=$ \qquad , $f_{p 2}=$

If there are 2 poles, and they are complex, give $f_{n}=\omega_{n} / 2 \pi$ and the damping factor ζ : $f_{n}=\omega_{n} / 2 \pi=$ \qquad ,$\zeta=$ \qquad

Part d, 10 points

If $\operatorname{Vin}(\mathrm{t})$ is a 100 mV step-function, find and plot $\operatorname{Vout}(\mathrm{t})$. Be sure to label and dimension the axes clearly, and to clearly label key features of the time waveform.

