#### Mid-Term Exam, ECE-137B

Tuesday, May 3, 2016

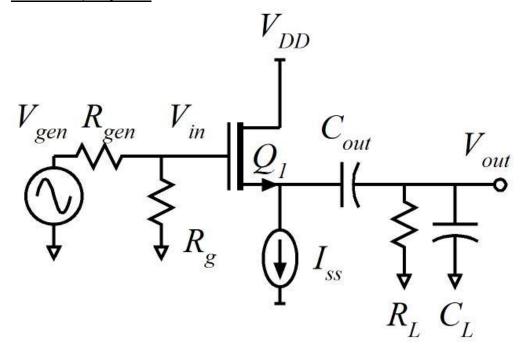
#### **Closed-Book Exam**

There are 2 problems on this exam, and you have 75 minutes.

- 1) show all work. Full credit will not be given for correct answers if supporting work is not shown.
- 2) please write answers in provided blanks
- 3) Don't Panic!
- 4) 137a, 137b crib sheets, and 2 pages personal sheets permitted.

Use any, all reasonable approximations. After stating them. 5% accuracy is fine if the method is correct.

## Do not turn over cover page until requested to do so.


| Name: |
|-------|
|       |

| Time function                       | LaPlace Transform                                                       |
|-------------------------------------|-------------------------------------------------------------------------|
| $\delta(t)$                         | 1                                                                       |
| U(t)                                | 1/s                                                                     |
| $e^{-\alpha t}U(t)$                 | _1                                                                      |
|                                     | $s + \alpha$                                                            |
| $e^{-\alpha t}\cos(\omega_d t)U(t)$ | $\frac{s+\alpha}{\left(s+\alpha\right)^2+\omega_d^2}$                   |
| $e^{-\alpha t}\sin(\omega_d t)U(t)$ | $\frac{\omega_{\rm d}}{\left({\rm s}+\alpha\right)^2+\omega_{\rm d}^2}$ |

| Problem | Points Received | Points Possible |
|---------|-----------------|-----------------|
| 1a      |                 | 2               |
| 1b      |                 | 5               |
| 1c      |                 | 4               |
| 1d      |                 | 15              |
| 1e      |                 | 7               |
| 1f      |                 | 7               |
| 1g      |                 | 5               |
| 2a      |                 | 4               |
| 2b      |                 | 6               |
| 2c      |                 | 10              |
| 2d      |                 | 5               |
| 3a      |                 | 5               |
| 3b      |                 | 10              |
| 3c      |                 | 10              |
| 3d      |                 | 5               |
| total   |                 | 100             |

1

#### Problem 1, 45 points



Q1 has 0.9 nm oxide thickness,  $\varepsilon_r$ =3.8, 12 nm gate length, and a 0.2 V threshold. Mobility is 400 cm^2/(V-s), saturation drift velocity is 1E7 cm/s,  $\lambda$  = 0 Volts<sup>-1</sup>,  $C_{gs} = \varepsilon_r \varepsilon_{ox} L_g W_g / T_{ox} + (0.5 \text{fF} / \mu \text{m}) \cdot W_g$  and  $C_{gd} = (0.5 \text{fF} / \mu \text{m}) \cdot W_g$ . calculated for you:

$$\overline{\varepsilon_r \varepsilon_{ox} / T_{ox} = 3.74 \cdot 10^{-2} \text{ F/m}^2, (\mu c_{ox} W_g / 2L_g) = (6.23 \cdot 10^{-2} \text{ A/V}^2) \cdot (W_g / 1 \mu \text{m})} 
(c_{ox} v_{sat} W_g) = (3.74 \cdot 10^{-3} \text{ A/V}^1) \cdot (W_g / 1 \mu \text{m}), (v_{sat} L_g / \mu) = 30 \text{mV}.$$

VDD=+1V . ISS=4 mA.

\*\*You will pick the FET width Wg such that Vgs=0.3Volts\*\*\* Rgen=100kOhm, Rg=1MOhm, RL=500 Ohms, CL=0fF. Cout=10nF.

2

## Part a, 2 points Find the following:

 $W_{g} =$ 

# Part b, 5 points small-signal parameters Find the following

$$C_{gs} =$$
\_\_\_\_\_\_  $C_{gd} =$ \_\_\_\_\_\_  $g_m =$ \_\_\_\_\_  $f_{\tau} =$ \_\_\_\_\_\_

| Part c: 4 points      |                   |
|-----------------------|-------------------|
| Mid Band Analysis:    |                   |
| Find the following:   |                   |
| $R_{in,Amplifier} = $ | $R_{L,eq} =$      |
| $V_{out}/V_{in} =$    | $V_{in}/V_{gen}=$ |

#### Part d: 15 points

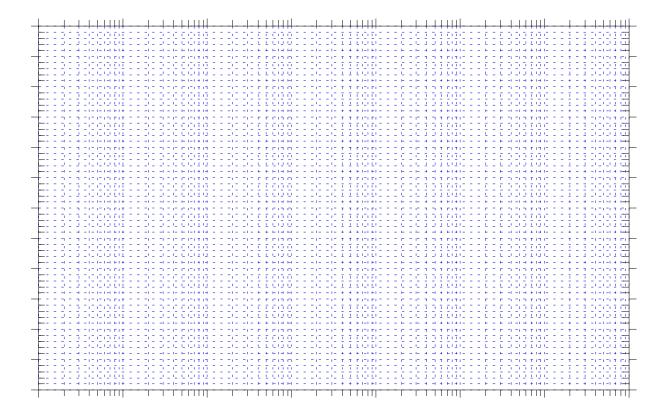
High-Frequency Analysis: Poles

Find the frequencies, in Hz, of the two poles limiting the high-frequency response of the amplifier. You can either use MOTC, or use the results derived in class (and written down on the class amplifier crib sheet). Hint: assume Cout is a short-circuit for this calculation

If the poles are real, give the 1 or 2 pole frequencies in Hz:  $f_{p1,HF} = \underline{\qquad} f_{p2,HF} = \underline{\qquad}.$  If there are 2 poles, and they are complex, give  $f_n = \omega_n/2\pi$  and the damping factor  $\zeta$ :  $f_n = \omega_n/2\pi = \underline{\qquad}, \ \zeta = \underline{\qquad}, \ \zeta = \underline{\qquad}.$ 

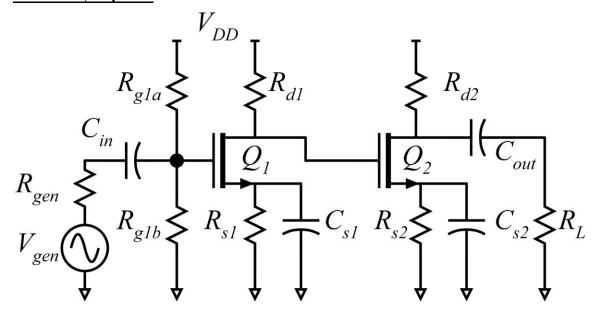
#### Part e: 7 points

High-Frequency Analysis: Zeros


Find the frequencies of any zeros (there may be zero, one or two present ) in the transfer function. You can either use nodal analysis, or use the results derived in class (and written down on the class amplifier crib sheet).

Part f: 7 points
Low-Frequency Analysis:
Find the frequency in Hz, of the pole, due to Cout, limiting the low-frequency response of the amplifier. Use any method of analysis you choose.

 $f_{p1,LF} =$ \_\_\_\_\_\_


#### Part g: 5 points

Draw a clean asymptotic Bode Magnitude plot of  $V_{\it out}/V_{\it gen}$  as a function of frequency in Hz. Be sure to label and dimension the axes clearly, label pole and zero frequencies and gain slopes. Be sure to use the semi-log paper correctly



11

#### Problem 2, 25 points



In the amplifier above,

Rgen=100kOhm, Rg1a=Rg1b=500kOhm,

Rs1=Rs2=100 Ohms. VDD=5Volts

gm1=5 mS, gm2=10mS

Rd1=1 kOhm, Rd2=2kOhm, RL=10kOhm.

Cin, Cout, Cs1, Cs2 are all very large

Cgs1=0fF, Cg1d=5fF, Cgs2=20 fF, Cgd2=0fF

Gds1=Gds2=0mS

#### Part a: 4 points

draw below a small-signal representation of the circuit, but with the transistors represented by transistor symbols, not small-signal hybrid-pi models

Part b, 6 points
Find the small-signal voltage gain of the two stages:

Vout1/Vin1=Vd1/Vg1=\_\_\_\_\_\_ Vout/Vin2=Vd2/Vg2-=\_\_\_\_\_

| Part | c, | 10 | points |
|------|----|----|--------|
|      |    |    |        |

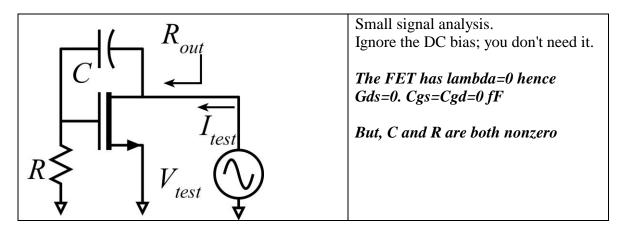
using the method of time constants, find a1 and a2 of the circuit transfer function:

a1=

a2=\_\_\_\_

#### Part d, 5 points

There may be either 1 or 2 poles of the transfer function.


If the poles are real, give the 1 or 2 pole frequencies in Hz:

If there are 2 poles, and they are complex, give  $f_n = \omega_n / 2\pi$  and the damping factor  $\zeta$ :

16

#### Problem 3, 30 points

#### Part a 5 points



Replacing the transistor with its high frequency small-signal model, draw a small-signal equivalent circuit diagram.

#### Part b, 10 points

*USING NODAL ANALYSIS*, compute Z(s)=Vtest(s)/Itest(s) in ratio-of-polynomials form:

$$Z(s) = Z_{mid-band} \times (s\tau)^{m} \times \frac{1 + b_{1}s + b_{2}s^{2} + \dots}{1 + a_{1}s + a_{2}s^{2} + \dots} = \underline{\hspace{2cm}}$$

here m, an integer, can be positive or negative or zero

#### Part c, 10 points

 $g_m$ =1 mS. R=100 kOhm, C=1pF

Find the frequencies of any zeros (there may be zero, one or two present ) in Z(s):

There may be either 1 or 2 poles in Z(s).

If the poles are real, give the 1 or 2 pole frequencies in Hz:

If there are 2 poles, and they are complex, give  $f_n = \omega_n / 2\pi$  and the damping factor  $\zeta$ :

20

### Part d, 5 points

Can you describe the behavior of Z(s) in terms of a simpler equivalent circuit ?