Mid-Term Exam, ECE-137B

Tuesday, May 3, 2016

Closed-Book Exam

There are 2 problems on this exam, and you have 75 minutes.

1) show all work. Full credit will not be given for correct answers if supporting work is not shown.
2) please write answers in provided blanks
3) Don't Panic !
4) $137 \mathrm{a}, 137 \mathrm{~b}$ crib sheets, and 2 pages personal sheets permitted.

Use any, all reasonable approximations. After stating them. 5\% accuracy is fine if the method is correct.
Do not turn over cover page until requested to do so.
Name: \qquad

Time function	LaPlace Transform
$\delta(\mathrm{t})$	1
$\mathrm{U}(\mathrm{t})$	$1 / \mathrm{s}$
$\mathrm{e}^{-\alpha t} \mathrm{U}(\mathrm{t})$	$\frac{1}{\mathrm{~s}+\alpha}$
$\mathrm{e}^{-\alpha \mathrm{t}} \cos \left(\omega_{\mathrm{d}} \mathrm{t}\right) \mathrm{U}(\mathrm{t})$	$\frac{\mathrm{s}+\alpha}{(\mathrm{s}+\alpha)^{2}+\omega_{\mathrm{d}}^{2}}$
$\mathrm{e}^{-\alpha \mathrm{t}} \sin \left(\omega_{\mathrm{d}} \mathrm{t}\right) \mathrm{U}(\mathrm{t})$	$\frac{\omega_{\mathrm{d}}}{(\mathrm{s}+\alpha)^{2}+\omega_{\mathrm{d}}^{2}}$

Problem	Points Received	Points Possible
1a		2
1b		5
1c		4
1d		15
1e		7
1f		7
1g		5
2a		4
2b		6
2c		10
2d		5
3a		5
3b		10
3c		10
3d		5
total		100

Problem 1, 45 points

Q1 has 0.9 nm oxide thickness, $\varepsilon_{r}=3.8,12 \mathrm{~nm}$ gate length, and a 0.2 V threshold. Mobility is $400 \mathrm{~cm}^{\wedge} 2 /(\mathrm{V}-\mathrm{s})$, saturation drift velocity is $1 \mathrm{E} 7 \mathrm{~cm} / \mathrm{s}, \lambda=0$ Volts $^{-1}$, $C_{g s}=\varepsilon_{r} \varepsilon_{o x} L_{g} W_{g} / T_{o x}+(0.5 \mathrm{fF} / \mu \mathrm{m}) \cdot W_{g}$ and $C_{g d}=(0.5 \mathrm{fF} / \mu \mathrm{m}) \cdot W_{g}$. calculated for you:
$\varepsilon_{r} \varepsilon_{o x} / T_{o x}=3.74 \cdot 10^{-2} \mathrm{~F} / \mathrm{m}^{2},\left(\mu c_{o x} W_{g} / 2 L_{g}\right)=\left(6.23 \cdot 10^{-2} \mathrm{~A} / \mathrm{V}^{2}\right) \cdot\left(W_{g} / 1 \mu \mathrm{~m}\right)$ $\left(c_{o x} v_{s a t} W_{g}\right)=\left(3.74 \cdot 10^{-3} \mathrm{~A} / \mathrm{V}^{1}\right) \cdot\left(W_{g} / 1 \mu \mathrm{~m}\right),\left(v_{s a t} L_{g} / \mu\right)=30 \mathrm{mV}$.
$\mathrm{VDD}=+1 \mathrm{~V} . \mathrm{ISS}=2 \mathrm{~mA}$.
You will pick the FET width Wg such that $\mathrm{Vgs}=0.25$ Volts*
Rgen $=100 \mathrm{kOhm}, \mathrm{Rg}=1 \mathrm{MOhm}, \mathrm{RL}=500 \mathrm{Ohms}, \mathrm{CL}=0 \mathrm{fF}$.
Cout $=1 \mathrm{nF}$.

Part a, 2 points
Find the following:
$W_{g}=$

Part b, 5 points
small-signal parameters
Find the following
$\begin{array}{ll}C_{g s}= & C_{g d}= \\ g_{m}= & f_{\tau}=\end{array}$

Part c: 4 points
Mid Band Analysis:
Find the following:

$$
\begin{array}{ll}
R_{\text {in, Amplifier }}= & R_{L, e q}= \\
V_{\text {out }} / V_{\text {in }}= & V_{\text {in }} / V_{\text {gen }}=
\end{array}
$$

Part d: 15 points

High-Frequency Analysis: Poles
Find the frequencies, in Hz , of the two poles limiting the high-frequency response of the amplifier. You can either use MOTC, or use the results derived in class (and written down on the class amplifier crib sheet). Hint: assume Cout is a short-circuit for this calculation

If the poles are real, give the 1 or 2 pole frequencies in Hz :
$f_{p 1, H F}=$ \qquad $f_{p 2, H F}=$ \qquad

If there are 2 poles, and they are complex, give $f_{n}=\omega_{n} / 2 \pi$ and the damping factor ζ : $f_{n}=\omega_{n} / 2 \pi=$ \qquad , $\zeta=$

Part e: 7 points

High-Frequency Analysis: Zeros
Find the frequencies of any zeros (there may be zero, one or two present) in the transfer function. You can either use nodal analysis, or use the results derived in class (and written down on the class amplifier crib sheet).

$$
f_{z 1}=
$$

\qquad , $f_{z 2}=$ \qquad ,

Part f: 7 points

Low-Frequency Analysis:
Find the frequency in Hz , of the pole, due to Cout, limiting the low-frequency response of the amplifier. Use any method of analysis you choose.
$f_{p 1, L F}=$

Part g: 5 points

Draw a clean asymptotic Bode Magnitude plot of $V_{\text {out }} / V_{\text {gen }}$ as a function of frequency in
Hz . Be sure to label and dimension the axes clearly, label pole and zero frequencies and gain slopes. Be sure to use the semi-log paper correctly

Problem 2, 25 points

In the amplifier above,
Rgen $=100 \mathrm{kOhm}, \operatorname{Rg} 1 \mathrm{a}=\mathrm{Rg} 1 \mathrm{~b}=500 \mathrm{kOhm}$,
Rs $1=R s 2=100$ Ohms. VDD $=5$ Volts
$\mathrm{gm} 1=5 \mathrm{mS}, \mathrm{gm} 2=10 \mathrm{mS}$
Rd1 $=1 \mathrm{kOhm}, \mathrm{Rd} 2=2 \mathrm{kOhm}, \mathrm{RL}=10 \mathrm{kOhm}$.
Cin, Cout, Cs1, Cs2 are all very large
Cgs 1 $=0 \mathrm{fF}, \mathrm{Cg} 1 \mathrm{~d}=5 \mathrm{fF}, \mathrm{Cgs} 2=0 \mathrm{fF}, \mathrm{Cgd} 2=10 \mathrm{fF}$
Gds1=Gds2=0mS
Part a: 4 points
draw below a small-signal representation of the circuit, but with the transistors represented by transistor symbols, not small-signal hybrid-pi models

Part b, 6 points
Find the small-signal voltage gain of the two stages:
Vout1/Vin1=Vd1/Vg1= Vout/Vin2=Vd2/Vg2-=

Part c, 10 points
using the method of time constants, find a1 and a2 of the circuit transfer function:
a1 $=$
$\mathrm{a} 2=$

Part d, 5 points

There may be either 1 or 2 poles of the transfer function.
If the poles are real, give the 1 or 2 pole frequencies in Hz :
$f_{p 1}=$ \qquad , $f_{p 2}=$ \qquad

If there are 2 poles, and they are complex, give $f_{n}=\omega_{n} / 2 \pi$ and the damping factor ζ : $f_{n}=\omega_{n} / 2 \pi=$ \qquad , $\zeta=$

Problem 3, 30 points

Part a 5 points

Replacing the transistor with its high frequency small-signal model, draw a smallsignal equivalent circuit diagram.

Part b, 10 points
USING NODAL ANALYSIS, compute $\mathrm{Z}(\mathrm{s})=\mathrm{Vtest}(\mathrm{s}) /$ Itest(s) in ratio-of-polynomials form:
$Z(s)=Z_{\text {mid-band }} \times(s \tau)^{m} \times \frac{1+b_{1} s+b_{2} s^{2}+\ldots}{1+a_{1} s+a_{2} s^{2}+\ldots}=$
here m, an integer, can be positive or negative or zero

Part c, 10 points
$g_{m}=1 \mathrm{mS} . \mathrm{R}=100 \mathrm{kOhm}, \mathrm{C}=1 \mathrm{pF}$
Find the frequencies of any zeros (there may be zero, one or two present) in $\mathrm{Z}(\mathrm{s})$:
$f_{z 1}=$ \qquad , $f_{z 2}=$ \qquad ,

There may be either 1 or 2 poles in $\mathrm{Z}(\mathrm{s})$.
If the poles are real, give the 1 or 2 pole frequencies in Hz :
$f_{p 1}=$ \qquad , $f_{p 2}=$ \qquad

If there are 2 poles, and they are complex, give $f_{n}=\omega_{n} / 2 \pi$ and the damping factor ζ : $f_{n}=\omega_{n} / 2 \pi=$ \qquad , $\zeta=$

Part d, 5 points

Can you describe the behavior of $Z(s)$ in terms of a simpler equivalent circuit ?

