Mid-Term Exam, ECE-137B

Wednesday, May 6, 2009

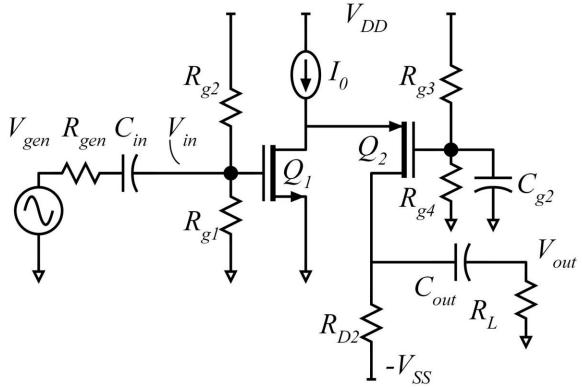
Closed-Book Exam

There are 2 problems on this exam, and you have 50 minutes.

- 1) show all work. Full credit will not be given for correct answers if supporting work is not shown.
- 2) please write answers in provided blanks
- 3) Don't Panic!
- 4) 137a, 137b crib sheets, and 2 pages personal sheets permitted.

Do not turn over the cover page until requested to do so.

Name:			


Use any and all reasonable approximations. 5% accuracy is fine if the method is correct.

Time function	LaPlace Transform
$\delta(t)$	1
U(t)	1/s
$e^{-\alpha t}U(t)$	1
	$s + \alpha$
$e^{-\alpha t}\cos(\omega_{d}t)U(t)$	$\frac{s + \alpha}{(s + \alpha)^2 + \omega_d^2}$
$e^{-\alpha t}\sin(\omega_{d}t)U(t)$	$\frac{\omega_{\rm d}}{\left({\rm s}+\alpha\right)^2+\omega_{\rm d}^2}$

Problem	Points Received	Points Possible
1a		10
1b		10
1c		10
1d		20
1e		10
2a		10
2b 2c		10
2c		10
2d		10
total		100

1

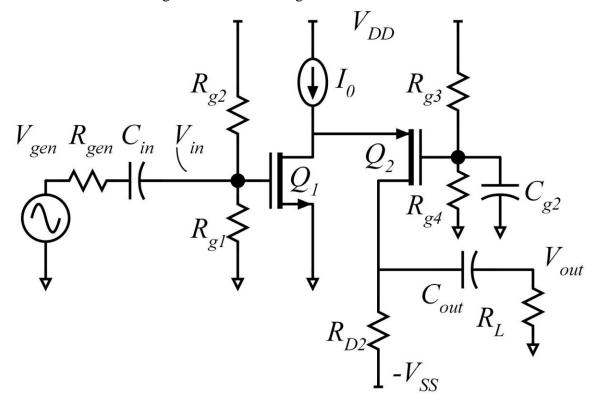
Problem 1, 60 points

Q1 and Q2 are mobility-limited FETs with 180nm gate length

Thresholds: +0.3V for the NFETs, -0.3V for the PFETs. $\lambda = 0$ Volts⁻¹

For the NFETs: $I_D = 3.7 (\text{mA/V}^2) \cdot (W_g / 1 \mu \text{m}) (V_{gs} - V_{th})^2$

For the PFETs: $I_D = 3.7 (\text{mA/V}^2) \cdot (W_g / 2\mu\text{m})(V_{gs} - V_{th})^2$


The power supplies are +2V and -2V. The drain currents of Q1 and Q2 are both 2mA. Vgs of Q1 is 0.4 V. Vgs of Q2 is -0.4V. The drain of Q1 is at +1.0V. The drain of Q2 is at 0V.

The blocking and bypass capacitors (Cin, Cout, Cg) are all extremely large. $R_{gen}=1$ kOhm. $R_L=300$ Ohms. $R_{gl}=R_{gd}=1$ MOhm.

Part a, 10 points

Find the following:

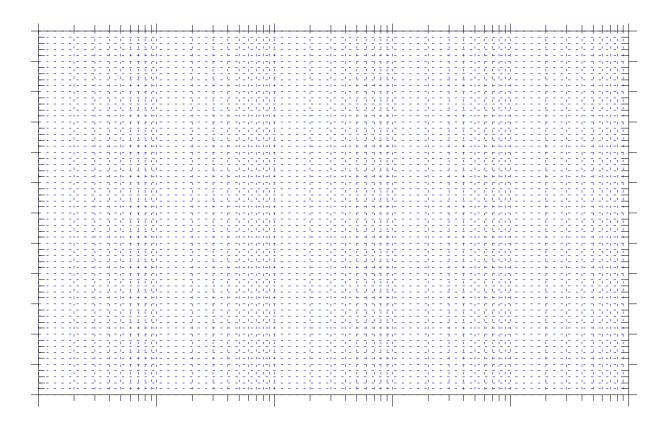
Draw all DC node voltages on the circuit diagram below.

Part b, 10 points

Mid Band Analysis:	
Find the following:	
transconductance of Q1=	transconductance of Q2=
Voltage gain of $Q2=V_{d2}/V_{s2}=$	input impedance of Q2=
Voltage gain of Q1= V_{d1}/V_{g1} =	amplifier input impedance=
Vout/Vin=	Vout/Vgen=

Part c: 10 points

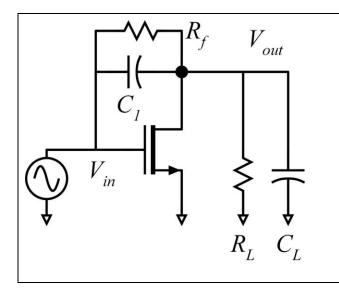
The FETs have an oxide thickness of 1nm, have SiO2 ($\varepsilon_r = 3.8$) as the gate dielectric. Recalling that $\varepsilon_0 = 8.854 \cdot 10^{-12} F/m$, and assuming that $C_{gs} = c_{ox} L_g W_g$, find Cgs of Q1 and Q2. Using the over-simplified relationship $C_{gd} = (1 fF/\mu \text{m}) \cdot W_g$, find Cds of Q1 and Q2.


Cgs1=	Cgs2=
Cgd1=	Cgd2=

Part d: 20 points

USING either MOTC or the results of single-stage nodal analysis, find all *three* pole frequencies, and the zero frequency, of the transfer function V_{out}/V_{gen} . Give the frequencies of these in Hz. Feel free to use the separated-pole approximation *if* it is justified.

Part e: 10 points


Draw a clean asymptotic Bode Magnitude plot of Vout/Vgen as a function of frequency in Hz. Be sure to label and dimension the axes clearly, label pole and zero frequencies and gain slopes. Be sure to use the semi-log paper correctly

Frequency, Hz

Problem 2, 40 points

Part a 10 points

Small signal analysis.
Ignore the DC bias; you don't need it.

The FET has lambda=0 hence Gds=0. Also, Cgs =Cgd=0 fF

Replacing the transistor with its high frequency small-signal model, draw a small-signal equivalent circuit diagram.

Part b, 10 points

USING NODAL ANALYSIS, compute Vout(s)/Vgen(s) in ratio-of-polynomials form:

$$\frac{V_{out}(s)}{V_{gen}(s)} = \frac{V_{out}}{V_{gen}}\bigg|_{mid-band} \times (s\tau)^m \times \frac{1 + b_1 s + b_2 s^2 + \dots}{1 + a_1 s + a_2 s^2 + \dots} = \underline{\hspace{2cm}}$$

here m, an integer, can be positive or negative or zero

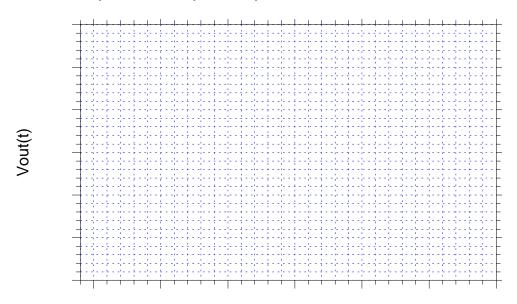
Part c, 10 points

gm= 10 mS. R_L =1000 Ohm, R_f =2000 Ohm, C1=1pF, CL=2pF.

Find the frequencies of any zeros (there may be zero, one or two present) in the transfer function:

There may be either 1 or 2 poles of the transfer function.

If the poles are real, give the 1 or 2 pole frequencies in Hz:


If there are 2 poles, and they are complex, give $f_n = \omega_n/2\pi$ and the damping factor ζ :

$$f_n = \omega_n / 2\pi = \underline{\hspace{1cm}}, \zeta = \underline{\hspace{1cm}}$$

14 в

Part d, 10 points

If Vin(t) is a 100mV step-function, find and plot Vout(t). Be sure to label and dimension the axes clearly, and to clearly label key features of the time waveform.

Time