## ECE137B Final Exam

There are 5 problems on this exam and you have 3 hours
There are pages 1-18 in the exam: please make sure all are there.
Do not open this exam until told to do so.
Show all work.
Credit will not be given for correct answers if supporting work is not shown.
Class Crib sheets and 4 pages (front and back $\rightarrow 8$ surfaces) of your own notes permitted. Don't panic.

| Time function | LaPlace Transform |
| :--- | :--- |
| $\delta(t)$ | 1 |
| $\mathrm{U}(\mathrm{t})$ | $1 / \mathrm{s}$ |
| $e^{-\alpha t} \cdot U(t)$ | $\frac{1}{s+\alpha}$ or $\frac{1 / \alpha}{1+s / \alpha}$ |
| $e^{-\alpha t} \cos \left(\omega_{d} t\right) \cdot U(t)$ | $\frac{s+\alpha}{(s+\alpha)^{2}+\omega_{d}^{2}}$ |
| $e^{-\alpha t} \sin \left(\omega_{d} t\right) \cdot U(t)$ | $\frac{\omega_{d}}{(s+\alpha)^{2}+\omega_{d}^{2}}$ |

Name: $\qquad$

| Problem | points | possible | Problem | points | possible |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 a |  | 5 | 5 a |  | 10 |
| lb |  | 3 | 5 b |  | 2 |
| 1c |  | 10 | 6 a |  | 10 |
| 1 d |  | 15 | 6 b |  | 10 |
| 2 |  | 10 | 6 c |  | 3 |
| 3 |  | 10 | 7 | 10 |  |
| 4 |  | 10 | total |  | 108 |

Problem 1, 33 points
method of first-order and second-order time constants. Some negative feedback


Above is a high-speed op-amp with, by design, a low input impedance to the negative input. It is connected, as the inset image suggests, as a positive voltage-gain stage.

All FETs are short-channel devices:
$I_{d} \cong v_{s a t} c_{o x} W_{g}\left(V_{g s}-V_{t h}-\Delta V\right)$ where $v_{s a t} c_{o x}=1 \mathrm{mS} /$ micrometer and $\left(V_{t h}+\Delta V\right)=0.3$ Volts.
All FETs have $\lambda=0 \mathrm{~V}^{-1}$, all have $W_{g}=10$ micrometers.
Q 4 a and Q 4 b have $C_{g s}=10 \mathrm{fF}$ and $C_{g d}=1 \mathrm{fF}$,
Q6a and Q6b have $C_{g s}=10 \mathrm{fF}$ and $C_{g d}=0 \mathrm{fF}$,
$\mathrm{Q} 1 \mathrm{a}, \mathrm{Q} 1 \mathrm{~b}, \mathrm{Q} 2 \mathrm{a}, \mathrm{Q} 2 \mathrm{~b}, \mathrm{Q} 3 \mathrm{a}, \mathrm{Q} 3 \mathrm{~b}, \mathrm{Q} 5 \mathrm{a}, \mathrm{Q} 5 \mathrm{~b}$, have $C_{g s}=0 \mathrm{fF}$ and $C_{g d}=0 \mathrm{fF}$.
$I_{o}=2 \mathrm{~mA}, R_{x a}=R_{x b}=2 \mathrm{M} \Omega, 2 R_{L}=$ infinity (just to keep the exam simple).
$C_{c A}=C_{c b}=99 \mathrm{fF} . R_{1}=1000 \Omega, R_{2}=50 \Omega$
The supplies are +1.5 V and -1.5 V .

## Part a, 5 points

Draw all DC node voltages and all DC bias currents on the diagram below.


## Part b, 3 points

Symmetry allows us to analyze bandwidth and gain with the half-circuit below:


To compute the loop transmission you must (1) set Vgen to zero, (2) cut the feedback loop as shown (3) restore the stage loading which has been removed by making the cut, (4) insert an AC voltage generator at the cut point, and (5) compute the voltage gain once around the loop.


Indicate on the drawing above what circuit element must be placed in the box labeled with a '?'", and give the value of this element.

## Part c, 10 points

Working with the circuit diagram of the previous page, determine the DC value of the loop transmission.
$T_{D C}=$

Part d, 15 points
Using MOTC, you will find the frequency, in Hz (not rad/sec), of the two major poles in the loop transmission $T$.

Find all the following.

| $C_{1}=C_{g d 4 a}+C_{c a}$ | $C_{2}=C_{g s 4 a}:$ | $C_{3}=C_{g s 6 a}$ |
| :--- | :--- | :--- |
| $R_{11}^{0}=$ | $R_{22}^{0}=$ | $R_{33}^{0}=$ |
| $R_{22}^{1}=$ | $R_{33}^{1}=$ | $R_{33}^{2}=$ |
| $f_{p 1}=$ | $f_{p 2}=$ |  |

Problem 2, 10 points
negative feedback


The amplifier has a differential gain of $10^{7}$.

The op-amp has infinite differential input impedance and zero differential output impedance.

The differential amplifier has pole in its openloop transfer function at $1 \mathrm{~Hz}, 10 \mathrm{MHz}$, and 50 MHz .
$R_{1}=4 \mathrm{kOhm}, R_{2}=1 \mathrm{kOhm}$,

Using the Bode plots on the next page, plot the open-loop gain ( $A_{d}$ or $A_{o l}$ ), the inverse of the feedback factor $(1 / \beta)$, closed loop gain $\left(A_{C L}\right)$, and determine the following:

Loop bandwidth= $\qquad$ phase margin= $\qquad$ Vout/Vgen at DC= $\qquad$
Be SURE to label and dimension all axes clearly, and to make clear and accurate asymptotic plots.

## Draw open loop gain (Ad) and 1/beta on this plot


draw closed loop gain on this bode plot


Problem 3, 10 points
negative feedback
The amplifier has a differential gain of $10^{7}$.


The op-amp has infinite differential input impedance and zero differential output impedance.

The differential amplifier has pole in its openloop transfer function at 1 Hz .
$R_{1}=9 \mathrm{kOhm}, R_{2}=1 \mathrm{kOhm}, \mathrm{C}=100 \mathrm{nF}$

Using the Bode plots on the next page, plot the open-loop gain ( $A_{d}$ or $A_{o l}$ ), the inverse of the feedback factor $(1 / \beta)$, closed loop gain $\left(A_{C L}\right)$, and determine the following:

Loop bandwidth= $\qquad$
Be SURE to label and dimension all axes clearly, and to make clear and accurate asymptotic plots.

## Draw open loop gain (Ad) and 1/beta on this plot


draw closed loop gain on this bode plot


Problem 4, 10 points
negative feedback


The amplifier has a differential gain of $10^{7}$.
The op-amp has $\mathbf{1 0 0}$ Ohms differential input impedance and zero differential output impedance.

The differential amplifier has one pole in its open-loop transfer function at 1 Hz .
$R_{1}=9 \mathrm{kOhm}, R_{2}=1 \mathrm{kOhm}$,

Using the Bode plots on the next page, plot the loop transmission (T), plot $A_{\infty}$ and plot the closed loop gain ( $A_{C L}=$ Vout/Vgen), and determine the following:

Loop bandwidth= $\qquad$ . Amplifier 3dB bandwidth= $\qquad$
Be SURE to label and dimension all axes clearly, and to make clear and accurate asymptotic plots.

Plot T, A_(infinity), on this plot

draw closed loop gain on this bode plot


Problem 5: 12 points
method of time constants analysis
part a, 10 points


Using MOTC, find the transfer function Vout(s)/Vgen(s). Working with the transfer function in standard form, i.e. $\frac{V_{\text {out }}(s)}{V_{\text {gen }}(s)}=\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{D C} \frac{1+b_{1} s+b_{2} s^{2}+\ldots}{1+a_{1} s+a_{2} s^{2}+\ldots}$ give algebraic answers in the blanks below


$$
a_{1}=
$$

$\qquad$

$$
a_{2}=
$$

$\qquad$

$$
b_{1}=\square \quad b_{2}=
$$

$\qquad$
We will give you that $\mathbf{b 1}=\mathbf{b} 2=0$ seconds. This can be found without nodal analysis, just by looking at the form of the circuit.
part b, 2 points
Now, $\mathrm{R} 1=1 \mathrm{k} \Omega, \mathrm{R} 2=2 \mathrm{k} \Omega, \mathrm{R} 3=3 \mathrm{k} \Omega, \mathrm{C} 1=1 \mu \mathrm{~F}, \mathrm{C} 2=2 \mu \mathrm{~F}$. Again find a 1 and a 2 and Vout/Vgen at DC .
$\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{D C}=\square \quad a_{1}=\ldots \quad a_{2}=$

Problem 6: 23 points
Nodal analysis and transistor circuit models


Part a, 10 points
Draw an accurate small-signal equivalent circuit model of the circuit above. Do not show components whose element values are zero or infinity (!).
Important hints:
(1) use a hybrid-pi model, not a T-model, for the FET
(2) Use a Norton model (not a Thevenin model) for the generator.

Part b, 10 points
Using NODAL ANALYSIS, find the transfer function Vout(s)/Vgen(s).
The answer must be in standard form $\frac{V_{\text {out }}(s)}{V_{\text {gen }}(s)}=\left.\frac{V_{\text {out }}}{V_{g e n}}\right|_{D C} \frac{1+b_{1} s+b_{2} s^{2}+\ldots}{1+a_{1} s+a_{2} s^{2}+\ldots}$

$$
\begin{array}{ccc}
\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{D C}= \\
b_{1}= & , \quad a_{1}= \\
& , & a_{2}= \\
& b_{2}=
\end{array}
$$

## Part c, 3 points

Now set: $R_{L}=1000 \Omega, g_{m}=1 \mathrm{mS}, C=1 \mathrm{pF}$. Find numeric values for $\left.\frac{V_{\text {out }}}{V_{g e n}}\right|_{D C}, \mathrm{a} 1, \mathrm{a} 2, \mathrm{~b} 1$ and b 2 .
Find the frequencies (in Hz ) of all pole and zero frequencies
$\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{D C}=\square$
$b_{1}=\square$
$\mathrm{fp} 1=\quad, b_{2}=\square$
$\mathrm{fz} 1=\square$
$\mathrm{fp} 2=$
$\mathrm{fz} 2=$

## Problem 7, 10 points

mental Fourier Transforms
An amplifier has low-frequency and high frequency poles, with an upper -3 dB frequency of 10 kHz and a lower -3 dB frequency of 2 kHz . It has a ${ }^{* *}$ MIDBAND** voltage gain of 10 . Plot below an accurate Bode plot of Vout/Vgen and an accurate plot of its step response with a 1 V step-function input. Label and dimension axes.
Frequency

time

