ECE137B Final Exam

6/11/2015, 8-11AM.

There are 4 problems on this exam and you have 3 hours
There are pages 1-21 in the exam: please make sure all are there.
Do not open this exam until told to do so.
Show all work.
Credit will not be given for correct answers if supporting work is not shown.
Class Crib sheets and 3 pages (front and back $\rightarrow 6$ surfaces) of your own notes permitted. Don't panic.

Time function	LaPlace Transform
$\delta(t)$	1
$\mathrm{U}(\mathrm{t})$	$1 / \mathrm{s}$
$e^{-\alpha t} \cdot U(t)$	$\frac{1}{s+\alpha}$ or $\frac{1 / \alpha}{1+s / \alpha}$
$e^{-\alpha t} \cos \left(\omega_{d} t\right) \cdot U(t)$	$\frac{s+\alpha}{(s+\alpha)^{2}+\omega_{d}^{2}}$
$e^{-\alpha t} \sin \left(\omega_{d} t\right) \cdot U(t)$	$\frac{\omega_{d}}{(s+\alpha)^{2}+\omega_{d}^{2}}$

Name: \qquad

Problem	points	possible	Problem	points	possible
1 a		5	2 c		5
Ab		5	3 a		10
1c		15	3 b		10
1 d		10	4 a		10
1e		5	4 b		10
2 a	5				
2b		10	total		

Problem 1, 40 points
frequency reponse, negative feedback

In the circuit above $g_{m 1}=g_{m 2}=20 \mathrm{mS} . g_{m 3}=100 \mathrm{mS}, R_{1}=1 \mathrm{k} \Omega, R_{2}=9 \mathrm{k} \Omega$.
$R_{3}=10 \mathrm{k} \Omega, R_{D S}=$ infinity Ω for all FETs
$C_{g s 1}=C_{g s 2}=31.8 \mathrm{fF}, C_{g d 1}=C_{g d 2}=0 \mathrm{fF}, C_{g s 3}=0 \mathrm{fF}, C_{g d 3}=31.8 \mathrm{fF}$.
Note: simplify the problem by using the approximation shown above right.

Part a, 5 points
feedback relationships
In the relationship $A_{C L}=A_{\infty} \frac{T}{1+T}$, what is A_{∞} for this circuit?
$A_{\infty}=$ \qquad

Part b, 5 points
feedback relationships
Find the value of the loop transmission at DC and the closed loop gain at DC. Hint---I recommend using the indicated cut point.
$T=$ $A_{C L}=$ \qquad

Part c, 15 points
transistor circuit frequency reponse.
Find the first two pole frequencies of the loop transmission T.
$f_{p 1}=\square f_{p 2}=$

Part d, 10 points
loop bandwidth and stablity.
Plot the loop transmission (labels slopes, label critical frequencies)
Determine the loop bandwidth and phase margin
$f_{\text {loop }}=$ \qquad , phase margin $=$ \qquad

Part e, 5 points
closed-loop bandwidth
Plot the closed-loop gain vs. frequency, estimating the gain peaking at $f_{\text {loop }}$ Estimate the amplifier's closed loop bandwidth closed-loop bandwidth = \qquad

Problem 2, 20 points

Circiut frequency response by MOTC.

In the circuit above $g_{m 1}=10 \mathrm{mS}, g_{m 2}=50 \mathrm{mS}$.
$R_{g e n}=1000 \Omega, C_{g s 1}=15.9 \mathrm{fF}, C_{g s 2}=79.5 \mathrm{fF} \quad C_{g d 1}=C_{g d 2}=0 \mathrm{fF}$.
$R_{D S}=$ infinity Ω for both FETs
$R_{L}=1 \mathrm{k} \Omega$.
part a, 5 points
midband analysis
find the gain Vout/Vgen at low frequencies. Vout/Vgen=
part b, 10 points
frequency reponse analysis
Find a_{1}, a_{2}. If the poles are real, find $f_{p 1}$ and $f_{p 2}$; if they are complex, find f_{n} and ζ $a_{1}=$

$$
a_{2}=
$$

\qquad
real poles: $f_{p 1}=$
\longrightarrow $f_{p 2}=$ \qquad complex poles $f_{n}=$ \qquad $\zeta=$ \qquad
part c, 5 points
another frequency reponse analysis
Using any correct method, find the transfer function Vout(s)/Vgen(s).
The answer must be in standard form $\frac{V_{\text {out }}(s)}{V_{\text {gen }}(s)}=\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{D C} \frac{1+b_{1} s \text {. }}{1+a_{1} s+a_{2} s^{2}}$
$R_{1}=1 \mathrm{k} \Omega, R_{2}=1 \mathrm{k} \Omega, C_{1}=1 \mathrm{nF}, C_{2}=2 \mathrm{nF}, C_{3}=3 \mathrm{nF}$

Hint: Nodal analysis will be slow and painful.

Problem 3: 20 points
negative feedback and stability

In the circuit above, $A_{d 2}$ and $A_{d 3}$ are ideal, infinite-gain op-amps.
$A_{d 1}$ is a differential amplifier with a voltage gain of 1 .
$R_{1}=1 \mathrm{k} \Omega, R_{2}=0.5 \mathrm{k} \Omega, C_{1}=15.9 \mathrm{pF}, C_{2}=15.9 \mathrm{pF}$.

Part a, 10 points
simple nodal analysis
find the loop transmission $T(s)$.
The answer must be in standard form: $T(s)=T_{D C} \frac{1+b_{1} s+b_{2} s^{2}+\ldots}{1+a_{1} s+a_{2} s^{2}+\ldots}$, or if there are N poles at DC, $T(s)=\frac{1}{(s \tau)^{N}} \frac{1+b_{1} s+b_{2} s^{2}+\ldots}{1+a_{1} s+a_{2} s^{2}+\ldots}$
$T(s)=$

Part a, 10 points
feeback stability analysis
Plot the loop transmission (labels slopes, label critical frequencies)
Determine the loop bandwidth and phase margin

$$
f_{\text {loop }}=
$$

\qquad , phase margin $=$ \qquad

Draw the loop transmission T on this plot

Problem 4, 20 points
frequency and transient response
part a, 10 points
transient response
A circuit has the response to a 1 V step-function input:

Determine the frequency and damping factor of the dominant poles of the transfer function.
Natural resonant frequency $=$ \qquad Hz estimated damping factor $=$ \qquad
spart b, 10 points
transient response

You have four unknown circuits (1-4) whose response to a 1 V step-function is as above.
For each, you must identify, giving your reasons clearly, which possible circuits (a-e) might give this observed resonse. (Consider the possibility that some elements in the circuits a-e might have negligible values)
response \#1: circuits
why:
response \#2: circuits
why:
response \#3: circuits
why:
response \#4: circuits
why:

