ECE137B Final Exam

Wednesday 6/8/2016, 7:30-10:30PM.

There are 7 problems on this exam and you have 3 hours
There are pages 1-32 in the exam: please make sure all are there.
Do not open this exam until told to do so.
Show all work.
Credit will not be given for correct answers if supporting work is not shown.
Class Crib sheets and 3 pages (front and back $\rightarrow 6$ surfaces) of your own notes permitted. Don't panic.

Time function	LaPlace Transform
$\delta(t)$	1
$\mathrm{U}(\mathrm{t})$	$1 / \mathrm{s}$
$e^{-\alpha t} \cdot U(t)$	$\frac{1}{s+\alpha}$ or $\frac{1 / \alpha}{1+s / \alpha}$
$e^{-\alpha t} \cos \left(\omega_{d} t\right) \cdot U(t)$	$\frac{s+\alpha}{(s+\alpha)^{2}+\omega_{d}^{2}}$
$e^{-\alpha t} \sin \left(\omega_{d} t\right) \cdot U(t)$	$\frac{\omega_{d}}{(s+\alpha)^{2}+\omega_{d}^{2}}$

Name: \qquad

Problem	points	possible	Problem	points	possible
1 a		5	5 a		10
1b		3	5 b		2
1c		10	6 a		10
1d		15	6 b		10
2		10	6 c	3	
3		10	7		10
4		10	total		108

Problem 1, 33 points
method of first-order and second-order time constants. Some negative feedback

Above is a high-speed op-amp. It is connected, as the inset image suggests, as a positive voltagegain stage.
All FETs are short-channel devices with $L_{g}=45 \mathrm{~nm}$
$I_{d} \cong v_{s a t} c_{o x} W_{g}\left(V_{g s}-V_{t h}-\Delta V\right)$ where $v_{s a t} c_{o x}=1 \mathrm{mS} /$ micrometer and $\left(V_{t h}+\Delta V\right)=0.2$ Volts.
All FETs have $\lambda=0 \mathrm{~V}^{-1}$, all have $W_{g}=1$ micrometers,
except Q2 and Q18, which have $\lambda=0 V^{-1}$, and $W_{g}=2$ micrometers,
$\mathrm{Q} 10,11,12,14$ have $C_{g s}=33.6 \mathrm{fF} / \mu \mathrm{m}^{2} \cdot L_{g} W_{g}+0.5 \mathrm{fF} / \mu \mathrm{m} \cdot W_{g}$ and $C_{g d}=0.5 \mathrm{fF} / \mu \mathrm{m} \cdot W_{g}$,
Q7, 8 have $C_{g s}=33.6 \mathrm{fF} / \mu \mathrm{m}^{2} \cdot L_{g} W_{g}+0.5 \mathrm{fF} / \mu \mathrm{m} \cdot W_{g}$ and $C_{g d}=0 \mathrm{fF}$.
Q1,2,3,4,5,6,9,13,15,16,17,18,19,20 have $C_{g s}=0 \mathrm{fF}$ and $C_{g d}=0 \mathrm{fF}$.
Note the indicated infinite bypass capacitors; these are AC grounds.
Pick R_{1} so that the current through it is 0.1 mA .
$R_{4 a}=R_{4 b}=2 \mathrm{M} \Omega, C_{5 A}=C_{5 b}=400 \mathrm{fF}$.
$R_{2 a}=R_{2 b}=2 \mathrm{k} \Omega, R_{3 a}=R_{3 b}=8 \mathrm{k} \Omega$
The supplies are +1.5 V and -1.5 V .

Part a, 5 points

Draw all DC node voltages and all DC bias currents on the diagram below.

Part b, 3 points

Symmetry allows us to analyze bandwidth and gain with the half-circuit below:

To compute the loop transmission you must (1) set Vgen to zero, (2) cut the feedback loop as shown (3) restore the stage loading which has been removed by making the cut, (4) insert an AC voltage generator at the cut point, and (5) compute the voltage gain once around the loop.

Indicate on the drawing above what circuit element must be placed in the box labeled with a '?', and give the value of this element.

Part c, 10 points

Working with the circuit diagram of the previous page, determine the DC value of the loop transmission.
$T_{D C}=$

Part d, 15 points
Using MOTC, you will find the frequency, in Hz (not rad/sec), of the two major poles in the loop transmission T. Hint: you can use the source degeneration model for Q7-Q8.

Find all the following.

$C_{1}=C_{5 A}+C_{g d 10}$	$C_{2}=C_{g s 8}:$	$C_{3}=C_{g s 10}$
$R_{11}^{0}=$	$R_{22}^{0}=$	$R_{33}^{0}=$
$R_{22}^{1}=$	$R_{33}^{1}=$	$R_{33}^{2}=$
$f_{p 1}=$	$f_{p 2}=$	

Problem 2, 10 points
negative feedback

Using the Bode plots on the next page, plot the loop transmission (T), plot A_{∞} and plot the closed loop gain ($A_{C L}=$ Vout/Vgen), and determine the following:

Loop bandwidth $=$ \qquad , phase margin $=$ \qquad
Be SURE to label and dimension all axes clearly, and to make clear and accurate asymptotic plots.

draw closed loop gain on this bode plot

Problem 3, 10 points
negative feedback

The op-amps are ideal: infinite gain, infinite differential input impedance and zero output impedance.
$R_{1}=100 \mathrm{Ohm}, R_{2}=1 \mathrm{kOhm}, \mathrm{C} 1=15.9 \mathrm{pF}, \mathrm{R} 3=333 \mathrm{Ohms}, \mathrm{R} 4=1 \mathrm{kOhm}, \mathrm{C} 2=159 \mathrm{pF}$.
Using the Bode plots on the next page, plot the loop transmission (T) of the overall feedback loop around the two op-amps, plot A_{∞} and plot the closed loop gain ($A_{C L}=$ Vout/Vgen), and determine the following:

Loop bandwidth= \qquad , phase margin $=$ \qquad
Be SURE to label and dimension all axes clearly, and to make clear and accurate asymptotic plots.

draw closed loop gain on this bode plot

Problem 4, 10 points
negative feedback

The amplifier has a differential gain of 10^{7}.
The op-amp has infinite differential input impedance and zero differential output impedance.

The differential amplifier has one pole in its open-loop transfer function at 1 Hz .
$R_{1}=9 \mathrm{kOhm}, R_{2}=1 \mathrm{kOhm}, \mathrm{C}=88.3 \mathrm{pF}$

Using the Bode plots on the next page, plot the open-loop gain (A_{d} or $A_{o l}$), the inverse of the feedback factor $(1 / \beta)$, closed loop gain $\left(A_{C L}\right)$, and determine the following:

Loop bandwidth= \qquad Amplifier 3 dB bandwidth= \qquad
Be SURE to label and dimension all axes clearly, and to make clear and accurate asymptotic plots.

Draw open loop gain (Ad) and 1/beta on this plot

draw closed loop gain on this bode plot

Problem 5: 12 points
method of time constants analysis
part a, 10 points

Using MOTC, find the transfer function Vout(s)/Vgen(s). Working with the transfer function in standard form, i.e. $\frac{V_{\text {out }}(s)}{V_{\text {gen }}(s)}=\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{D C} \quad \frac{1+b_{1} s+b_{2} s^{2}+\ldots}{1+a_{1} s+a_{2} s^{2}+\ldots}$ give algebraic answers in the blanks below
\qquad $a_{1}=$ \qquad $a_{2}=$ \qquad

$$
b_{1}=
$$

\qquad
You need some method other than MOTC to get the zero time constant b1. Nodal analysis, solving only for the numerator, would do this, but is hard work. Hint: What would happen to Vout if the impedance of the parallel $\mathrm{R} 2|\mid \mathrm{C} 2$ network were infinite ? Does that tell you the zero frequency?
part b, 2 points
Now, $\mathrm{R} 1=1 \mathrm{k} \Omega, \mathrm{R} 2=2 \mathrm{k} \Omega, \mathrm{R} 3=3 \mathrm{k} \Omega, \mathrm{C} 1=1 \mu \mathrm{~F}, \mathrm{C} 2=2 \mu \mathrm{~F}$. Again find a 1 and a 2 and Vout/Vgen at DC .
$\left.\frac{V_{\text {out }}}{V_{\text {gen }}}\right|_{D C}=\square \quad a_{1}=\ldots \quad a_{2}=$

Problem 6: 23 points

Nodal analysis and transistor circuit models

Part a, 10 points
Draw an accurate small-signal equivalent circuit model of the circuit above. Do not show components whose element values are zero or infinity (!).
Important hint:
(1) use a hybrid-pi model, not a T-model, for the FET

Part b, 10 points
Using NODAL ANALYSIS, find the input admittance $\boldsymbol{Y}_{i n}(s)=I_{i n}(s) / V_{i n}(s)$
The answer must be in the form $Y_{i n}(s)=Y_{x} \cdot(s \tau)^{n} \frac{1+b_{1} s+b_{2} s^{2}+\ldots}{1+a_{1} s+a_{2} s^{2}+\ldots}$,
where Y_{x} has units of (Amps/Volt), n might be any positive or negative integer (or n might be zero), and τ has units of time
$Y_{x}=$ \qquad , $\tau=$ \qquad , $n=$ \qquad ,
$a_{1}=$
$a_{2}=$ \qquad

$$
b_{1}=
$$

\qquad
$b_{2}=$ \qquad

Part c, 3 points

Now set: $g_{m}=1 \mathrm{mS}, C_{1}=1 \mathrm{pF}, C_{2}=2 \mathrm{pF}$. Find the numeric value (real and imaginary part) for Yin at 10 MHz . Do not be surprised if the answer appears to be an unexpected value. $Y_{i n}(10 \mathrm{MHz})=$

Problem 7, 10 points
mental Fourier Transforms
An amplifier has 3 dB gain, is non-inverting, has a low-frequency cutoff, at the -3 dB point, of 100 kHz , and a high-frequency cutoff, at the -3 dB point, of 1 MHz . Below the low-frequency 3 dB point, the gain varies as $20 \mathrm{~dB} / \mathrm{decade}$. Above the high-frequency 3 dB point, the gain varies as $-20 \mathrm{~dB} /$ decade.

Plot below an accurate Bode plot of Vout/Vgen and an accurate plot of its step response with a 1 V step-function input. Label and dimension axes.

time

