Mid-Term Exam, ECE-137B
Tuesday, May 3, 2016

Closed-Book Exam

There are 2 problems on this exam, and you have 75 minutes.

1) show all work. Full credit will not be given for correct answers if supporting work is not shown.
2) please write answers in provided blanks
3) Don't Panic !
4) 137 a, 137 b crib sheets, and 2 pages personal sheets permitted. Use any, all reasonable approximations. After stating them. 5% accuracy is fine if the

method is correct.
 Do not turn over cover page until requested to do so.

Name: \qquad

Time function	LaPlace Transform
$\delta(t)$	1
$\mathrm{U}(\mathrm{t})$	$1 / \mathrm{s}$
$\mathrm{e}^{-\alpha t} \mathrm{U}(\mathrm{t})$	$\frac{1}{\mathrm{~s}+\alpha}$
$\mathrm{e}^{-\alpha t} \cos \left(\omega_{\mathrm{d}} \mathrm{t}\right) \mathrm{U}(\mathrm{t})$	$\frac{\mathrm{s}+\alpha}{(\mathrm{s}+\alpha)^{2}+\omega_{\mathrm{d}}^{2}}$
$\mathrm{e}^{-\alpha t} \sin \left(\omega_{\mathrm{d}} \mathrm{t}\right) \mathrm{U}(\mathrm{t})$	$\frac{\omega_{\mathrm{d}}}{(\mathrm{s}+\alpha)^{2}+\omega_{\mathrm{d}}^{2}}$

Problem	Points Received	Points Possible
1a		2
1b		5
1c		4
1d		15
1e		7
1f		7
1g		5
2a		4
2b		6
2c		10
2d		5
3a		5
3b		10
3c		5
3d		100
total		

Q1 has 0.9 nm oxide thickness, $\varepsilon_{r}=3.8,12 \mathrm{~nm}$ gate length, and a 0.2 V threshold.
Mobility is $400 \mathrm{~cm}^{\wedge} 2 /(\mathrm{V}-\mathrm{s})$, saturation drift velocity is $1 \mathrm{E} 7 \mathrm{~cm} / \mathrm{s}, \lambda=0$ Volts $^{-1}$, $C_{g s}=\varepsilon_{r} \varepsilon_{o x} L_{g} W_{g} / T_{o x}+(0.5 \mathrm{fF} / \mu \mathrm{m}) \cdot W_{g}$ and $C_{g d}=(0.5 \mathrm{fF} / \mu \mathrm{m}) \cdot W_{g}$. calculated for you:

$$
\begin{aligned}
& \text { calculated for you: } \\
& \varepsilon_{r} \varepsilon_{o x} / T_{o x}=3.74 \cdot 10^{-2} \mathrm{~F} / \mathrm{m}^{2},\left(\mu c_{o x} W_{g} / 2 L_{g}\right)=\left(6.23 \cdot 10^{-2} \mathrm{~A} / \mathrm{V}^{2}\right) \cdot\left(W_{g} / 1 \mu \mathrm{~m}\right) \\
& \left(c_{o x} v_{s a t} W_{g}\right)=\left(3.74 \cdot 10^{-3} \mathrm{~A} / \mathrm{V}^{1}\right) \cdot\left(W_{g} / 1 \mu \mathrm{~m}\right),\left(v_{\text {sat }} L_{g} / \mu\right)=30 \mathrm{mV} \text {. } \\
& \text { YD }=+1 \mathrm{~V} . \mathrm{SS}=4 \mathrm{~mA} \text {. } \\
& \text { **You will pick the FET width Vg such that Vgs=0.3Volts*** } \\
& \begin{array}{l}
\text { Rgen }=100 \mathrm{kOhm}, \mathrm{Rg}=1 \mathrm{MOhm}, \mathrm{RL}=500 \text { Ohms, } \mathrm{CL}=0 \mathrm{fF} \text {. } \\
\text { lout }=10 \mathrm{nF} \text {. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 7_{p}=257 a / k \\
& 7_{p 2}=6996 / k_{1} \\
& 7_{3}=1.4 \text { Thy }
\end{aligned}
$$

$$
7_{\text {cow }}=30.4 \mathrm{kH}
$$

Part a, 2 points
Find the following:

$$
W_{8}=
$$

1 pt

$$
\begin{aligned}
& \Rightarrow \text { Velocity limited. } \\
& 1 \text { pt }\left[\begin{array}{l}
4 \mathrm{~mA}=I d=3.74 \mathrm{~mA} \frac{1}{\mathrm{Lm}} \cdot \mathrm{Ng} \cdot \underbrace{(\mathrm{Nas}-0.215 \mathrm{~V})}_{0.04 \mathrm{~V}}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& W q=\frac{4 \mathrm{md}}{3.74 \frac{\mathrm{~mA}}{4 . \mathrm{Lm}}} \cdot 85 \mathrm{mV}=12,58 \mu \mathrm{~m}
\end{aligned}
$$

Part b, 5 points small-signal parameters

$$
\begin{aligned}
& 1 p^{1 \cdot}\left[\begin{array}{rl}
\text { Cyd } & =0.5 \text { fompon } \cdot 12 \text {. Fum } \\
& =6.3 \mathrm{ff}
\end{array}\right. \\
& 1 \mathrm{pt}\left[\begin{array}{rl}
q_{m} & =3.74 \frac{\mathrm{mt}}{\mathrm{~V} \cdot \mu \mathrm{~m}} \cdot 12 \cdot \text { Qun } \\
& =47.1 \mathrm{~ms}
\end{array}\right. \\
& 1 p^{3}\left[F_{y}=\frac{9 m}{2 \pi\left(G_{g s}+G g\right)}=410 \mathrm{GW}_{8}\right.
\end{aligned}
$$

Part c: 4 points
Mid Band Analysis:
Find the following:

$$
\begin{aligned}
& \text { Ipt. }\left[P_{\text {inang }}=P_{g}=1 N\right. \\
& 1 \rho^{-1}\left[R_{L y}=R_{L} / / F_{D}=5=P_{L} / / \infty=500\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { lpt }\left[\frac{\text { w.in }}{\text { vegen }}=\frac{1 N \Omega}{1 M \Omega+100 \mathrm{kR}}=0.90909\right. \\
& {\left[\frac{v_{0}}{v_{x}}=0.872\right] \text { not requestel. }}
\end{aligned}
$$

Part d: 15 points
High-Frequency Analysis: Poles
Find the frequencies, in Hz , of the two poles limiting the high-frequency response of the amplifier. You can either use MOTC, or use the results derived in class (and written down on the class amplifier crib sheet). Hint: assume Tout is a short-circuit for this calculation

If the poles are real, give the 1 or 2 pole frequencies in Hz :

$$
f_{p 1, H F}=\quad 257 \mu / 7
$$

$f_{\text {pr, HF }}=699$ Git

If there are 2 poles, and they are complex, give $f_{n}=\omega_{n} / 2 \pi$ and the damping factor ζ :

$$
f_{n}=\omega_{n} / 2 \pi=
$$

\qquad , $\zeta=$ \qquad
not $\frac{\text { Notation }}{a_{1}=P_{11} Q_{1}+R_{22} Q_{2}} \quad C_{1}=G_{5}^{5}, \quad C_{2}=C Q d$. $a_{1}=P_{11}{ }^{\circ} C_{1}+R_{22} C_{2}$
$1\left[P_{22}^{0}=10\right.$ にinll Mn = go. quell
$1\left[P_{22^{\circ}} C_{2}-90.81 k \Omega \cdot 6.3 \mathrm{E}=573 \mu 5\right.$
$2\left[\begin{array}{rl}P_{11}^{0} & =90.91 k R[1-1, n]+\frac{1}{Q_{1}} / / P_{6 y}=3.7 K R \\ & =3.72 k \Omega\end{array}\right.$
$1\left[P_{11}^{\circ} \mathrm{C}=3.72 \mathrm{k} \cdot 12 \cdot\right.$ ot $=44.6 \mathrm{~F} 5$.
$1\left[a,=6 / 8 p^{5}\right.$.
${ }_{1}\left[a_{2}=P_{11}^{0} C_{1} C_{2} R_{22}^{\prime}\right.$
$1\left[\quad P_{22}^{\prime}=R_{g e n} \| / R_{y} / / R_{c}\right.$

$=90.9 \mathrm{kR} / \mathrm{se0}=497 \Omega \underline{500} \Omega$
$2\left[a_{2}=\left(P_{11} C_{1}\right) C_{2} P_{2 L}^{\prime}=44.6 \rho 5 \cdot C_{1} \nabla Z F \cdot \operatorname{son}\right.$

$$
=1.4 \cdot 10^{-22} \mathrm{sec}^{2}=(11.9 \mathrm{p})^{2}
$$

$2\left[\right.$ Try sit $a_{2}\left(a_{1}=(11.4 p 5)^{2} / G 1\right.$ rps $=$ welt sep

$$
2\left[H_{p 1}=\frac{0,159}{a_{1}}=\frac{257 \text { int }}{6}\right.
$$

$$
\begin{aligned}
& M_{2}=\frac{0.164}{a_{2} 1 a_{1}}=649 \\
& 6 H z
\end{aligned}
$$

(9) GHz.

Part e: 7 points
High-Frequency Analysis: Zeros
Find the frequencies of any zeros (there may be zero, one or two present) in the transfer function. You can either use nodal analysis, or use the results derived in class (and written down on the class amplifier crib sheet).

$$
f_{z 1}=\frac{1.2 \text { Ti }}{}, f_{z 2}=\frac{x}{\text { only one } Z 60 .}
$$

Part f: 7 points
Low-Frequency Analysis:
Find the frequency in Hz , of the pole, due to Court, limiting the low-frequency response of the amplifier. Use any method of analysis you choose.

$$
f_{p l, L F}=30.4 \mathrm{Kk}
$$

4

3

$$
\left[\text { Hew }=\frac{0.159}{10 n F(521.2 n)}=30.4 \mathrm{kik}\right.
$$

Part g: 5 points
Draw a clean asymptotic Bode Magnitude plot of $V_{\text {out }} / V_{\text {gen }}$ as a function of frequency in Hz . Be sure to label and dimension the axes clearly, label pole and zero frequencies and gain slopes. Be sure to use the semi-log paper correctly

Problem 2, 25 points

In the amplifier above,
Rgen $=100 \mathrm{kOhm}$, $\mathrm{Rg} 1 \mathrm{a}=\mathrm{Rg} 1 \mathrm{~b}=500 \mathrm{kOhm}$,
Rs 1=Rs2=100 Ohms. VDD=5Volts
$\mathrm{gm} 1=5 \mathrm{mS}, \mathrm{gm} 2=10 \mathrm{mS}$
$\mathrm{Rd} 1=1 \mathrm{kOhm}, \mathrm{Rd} 2=2 \mathrm{kOhm}, \mathrm{RL}=10 \mathrm{kOhm}$.
Cen, Tout, Cs, Cs are all very large
$\mathrm{Cgs} 1=0 \mathrm{fF}, \mathrm{Cg} 1 \mathrm{~d}=5 \mathrm{fF}, \mathrm{Cgs} 2=20 \mathrm{fF}, \mathrm{Cgd} 2=0 \mathrm{fF}$
Gds 1 $=$ Gds $2=0 \mathrm{mS}$

Part a: 4 points

draw below a small-signal representation of the circuit, but with the transistors
represented by transistor symbols, not small-signal hybrid-pi models

Part b, 6 points
Find the small-signal voltage gain of the two stages:

$$
\begin{aligned}
& \text { Vout } 1 / \operatorname{Vin} 1=V d 1 / V g 1=\quad-5 \\
& \text { Vout/Vin2=Vd2/Vg2-= } \\
& A_{v_{1}}=-g m_{1} \cdot R_{\text {leq }}=-g m_{1} \cdot R_{d_{1}}=-5 m s \times 1 k \Omega=-5 \\
& A v_{2}=-g m_{2}-R_{\text {leq }}=-g m_{2} \cdot\left(R_{d_{2}} / / R_{L}\right)=-10 \mathrm{~ms} \cdot 1.67 \mathrm{kR} \\
& =-16.7
\end{aligned}
$$

Part c, 10 points
using the method of time constants, find al and az of the circuit transfer function:

$$
\begin{aligned}
& a 1=\frac{2.17 n s}{7.14 \times 10^{-21} s^{2}} \\
& C_{1}=C_{g d_{1}} \quad C_{2}=C_{g s} \\
& a_{1}=R_{11}^{0} \cdot C_{1}+R_{22}^{0} C_{2} \\
& R_{11}^{0}=\left(R_{\text {gen }} / / R_{g, a} / / R_{g 1 b}\right)\left(1-A_{\nu_{1}}\right)+R_{d} \text {, } \\
& =71.43 \mathrm{k} \Omega \times[1-(-5)]+1 \mathrm{k} \Omega \text {. } \\
& =429.57 \mathrm{k} \Omega \\
& R_{22}^{0}=R d_{1}=1 k \Omega \text {. } \\
& a_{1}=429.57 \mathrm{k} \Omega \cdot 51 F+1 \mathrm{k} \Omega \times 20+\mathrm{F} \\
& =2.15 n s+20 p s=217 n s . \\
& a_{2}=R_{11}^{0} C_{1} C_{2} \cdot R_{22}^{\prime} \\
& R_{22}^{\prime}=\left(R_{g e n} \text { // } R_{g \cdot a} \text { // } R_{g, b}\right) / /\left(1 / g_{m},\right) / / R_{d} \text {, } \\
& =71.43 \mathrm{k} \Omega .1 / 200 \Omega / / 1 \mathrm{~K} \Omega=166.28 \Omega \text {. } \\
& a_{2}=429.57 \mathrm{kR} \times 5 \mathrm{fF} \times 20 \mathrm{FF} \times 166.28 \Omega \\
& =7.14 \times 10^{-21} \mathrm{~s}^{2} .
\end{aligned}
$$

Part d, 5 points
There may be either 1 or 2 poles of the transfer function.
If the poles are real, give the 1 or 2 pole frequencies in Hz :

$$
f_{p 1}=73-2 / \mathrm{MHz}, f_{p 2}=48,25 \mathrm{GHz}
$$

If there are 2 poles, and they are complex, give $f_{n}=\omega_{n} / 2 \pi$ and the damping factor ζ :

$$
\begin{aligned}
f_{n}=\omega_{n} / 2 \pi & =\zeta= \\
\frac{a_{2}}{a_{1}} & =\frac{7.14 \times 10^{-21} \mathrm{~s}^{2}}{2.17 n \mathrm{~s}}=3.29 \mathrm{ps}<a_{1}
\end{aligned}
$$

$\Rightarrow 2$ real seperated poles.

$$
\begin{aligned}
& f_{p_{1}}=\frac{1}{2 \pi a_{1}}=73.27 \mathrm{MHz} \\
& f_{p_{2}}=\frac{a_{1}}{2 \pi a_{2}}=48.25 \mathrm{GHz}
\end{aligned}
$$

Replacing the transistor with its high frequency small-signal model, draw a smallsignal equivalent circuit diagram.
$\left[\begin{array}{l}\Sigma I=c \Leftrightarrow \sqrt{y} \\ V_{y} / R+\left(V_{y}-V_{\text {est }}\right) d C=0 .\end{array}\right.$
3 pts for correct kc supt For correct answer.
(3)

Part c, 10 points

$$
g_{m}=1 \mathrm{mS} . \mathrm{R}=100 \mathrm{kOhm}, \mathrm{C}=1 \mathrm{pF}
$$

Find the frequencies of any zeros (there may be zero, one or two present) in $\mathrm{Z}(\mathrm{s})$:

$$
f_{z 1}=1.59 \mathrm{AlHz}, f_{z 2}=\square, \ldots
$$

There may be either 1 or 2 poles in $\mathrm{Z}(\mathrm{s})$.
If the poles are real, give the 1 or 2 pole frequencies in Hz :

$$
f_{p 1}=0 \mathrm{~Hz}, f_{p 2}=
$$

If there are 2 poles, and they are complex, give $f_{n}=\omega_{n} / 2 \pi$ and the damping factor ζ : $f_{n}=\omega_{n} / 2 \pi=$ \qquad , $\zeta=$ \qquad

$$
f_{z_{1}}=\frac{1}{2 \pi b_{1}}=\frac{1}{2 \pi R C}=1.59 \mathrm{MHz} .
$$

Can you describe the behavior of $\mathrm{Z}(\mathrm{s})$ in terms of a simpler equivalent circuit?

- In low frequecy, C is like open:

$z=\infty$ for $\lambda=0 \mathrm{~V}^{-1}$
- As frequency increases, $Z(s)$ drops as C starts to cause signal leakage
- In high frequency, C is like short.

$$
i_{\text {test }}=V_{\text {test }} \cdot g m+V_{\text {test }} / R
$$

$$
Z=\frac{V_{\text {test }}}{I_{\text {test }}}=\frac{1}{9 m+\frac{1}{R}}
$$

diode connected!

$$
Z=\frac{1}{\operatorname{gin}} / / R
$$

