Mid-Term Exam, ECE-137B

Tuesday, May 3, 2016

Closed-Book Exam

There are 2 problems on this exam, and you have 75 minutes.

1) show all work. Full credit will not be given for correct answers if supporting work is not shown.
2) please write answers in provided blanks
3) Don't Panic !
4) $137 \mathrm{a}, 137 \mathrm{~b}$ crib sheets, and 2 pages personal sheets permitted.

Use any, all reasonable approximations. After stating them. 5% accuracy is fine if the method is correct.

Do not turn over cover page until requested to do so.

Name: \qquad

Time function	LaPlace Transform
$\delta(\mathrm{t})$	1
$\mathrm{U}(\mathrm{t})$	$1 / \mathrm{s}$
$\mathrm{e}^{-\alpha t} \mathrm{U}(\mathrm{t})$	$\frac{1}{\mathrm{~s}+\alpha}$
$\mathrm{e}^{-\alpha t} \cos \left(\omega_{\mathrm{d}} \mathrm{t}\right) \mathrm{U}(\mathrm{t})$	$\frac{\mathrm{s}+\alpha}{(\mathrm{s}+\alpha)^{2}+\omega_{\mathrm{d}}^{2}}$
$\mathrm{e}^{-\alpha t} \sin \left(\omega_{\mathrm{d}} \mathrm{t}\right) \mathrm{U}(\mathrm{t})$	$\frac{\omega_{\mathrm{d}}}{(\mathrm{s}+\alpha)^{2}+\omega_{\mathrm{d}}^{2}}$

Problem	Points Received	Points Possible
la		2
1b		5
1c		4
1d		15
1e		7
lf		7
1g		5
2a		4
2b		6
2c		10
2d		5
3a		5
3b		10
3c		10
3d		5
total		100

- Check here: which Exam is this?

Problem 1, 45 points

Q1 has 0.9 nm oxide thickness, $\varepsilon_{r}=3.8,12 \mathrm{~nm}$ gate length, and a 0.2 V threshold.
Mobility is $400 \mathrm{~cm}^{\wedge} 2 /(\mathrm{V}-\mathrm{s})$, saturation drift velocity is $1 \mathrm{E} 7 \mathrm{~cm} / \mathrm{s}, \lambda=0$ Volts $^{-1}$, $C_{g s}=\varepsilon_{r} \varepsilon_{o x} L_{g} W_{g} / T_{o x}+(0.5 \mathrm{fF} / \mu \mathrm{m}) \cdot W_{g}$ and $C_{g d}=(0.5 \mathrm{fF} / \mu \mathrm{m}) \cdot W_{g}$.

calculated for you:

$$
\begin{aligned}
& \varepsilon_{r} \varepsilon_{o x} / T_{o x}=3.74 \cdot 10^{-2} \mathrm{~F} / \mathrm{m}^{2},\left(\mu c_{o x} W_{g} / 2 L_{g}\right)=\left(6.23 \cdot 10^{-2} \mathrm{~A} / \mathrm{V}^{2}\right) \cdot\left(W_{g} / 1 \mu \mathrm{~m}\right) \\
& \left(c_{o x} v_{s a t} W_{g}\right)=\left(3.74 \cdot 10^{-3} \mathrm{~A} / \mathrm{V}^{1}\right) \cdot\left(W_{g} / 1 \mu \mathrm{~m}\right),\left(v_{s a t} L_{g} / \mu\right)=30 \mathrm{mV} .
\end{aligned}
$$

$\mathrm{VDD}=+1 \mathrm{~V} . \mathrm{IS} S=2 \mathrm{~mA}$.
You will pick the FET width Wg such that $\mathrm{Vgs}=0.25$ Volts*
Rgen $=100 \mathrm{kOhm}, \mathrm{Rg}=1 \mathrm{MOhm}, \mathrm{RL}=500 \mathrm{Ohms}, \mathrm{CL}=0 \mathrm{fF}$.
Couth $=1 \mathrm{nF}$.

Part a, 2 points
Find the following:

$$
W_{g}=15 \cdot 3 \mu \mathrm{~m}
$$

$$
5 \text { Logs }=0.25 V \quad \text { bot } V t h+\frac{25 c t \operatorname{lq} / \mu}{2}=0.2 v+\frac{30 \mathrm{mV}}{2}=0.215 \mathrm{~V}
$$

Part b, 5 points
small-signal parameters
Find the following

$$
\begin{aligned}
& C_{g s}=\frac{14.4 \mathrm{f1}}{57.2 \mathrm{mS}} C_{g d}=\frac{75 \mathrm{ff}}{4115 \mathrm{GHz}} \\
& g_{m}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { ipt }\left[9 \mathrm{~m}=3074 \frac{\mathrm{mt}}{\mathrm{Vmm}} \cdot 1 \text { Skm }=57.2 \mathrm{~ms}\right. \\
& 1 p \cdot\left[f_{r}=\frac{9 m}{z \pi\left(\operatorname{tgs}+\csc _{x}\right)}=415 \mathrm{Gtz}\right.
\end{aligned}
$$

1.9

Part c: 4 points
Mid Band Analysis:
Find the following:

$$
\begin{aligned}
& \text { Find the following: } \\
& R_{\text {in, Amplifier }}=\frac{1 m \Omega}{} R_{L, e q}=\frac{500 \Omega}{} V_{\text {out }} / V_{\text {in }}=0.9661835
\end{aligned} V_{\text {in }} / V_{\text {gen }}=0.909
$$

$$
\begin{aligned}
& {[\text { Finsmp }=A g=1 m \Omega} \\
& \text { opt }\left[P_{l a y}=R_{L}\left\|R_{D S}=R_{L}\right\| C O=R_{l}=560 . \Omega\right. \\
& 1 T_{t}\left[\frac{V_{0}}{V_{i n}}-\frac{R_{L} Z_{2}}{R_{L_{8}}+1 / 9 m}-\frac{500 \Omega}{500 R-17.5 \Omega}=0.9661835\right. \\
& 11^{1}\left[\frac{V_{i n}}{V_{0}}=\frac{1 m \Omega}{1 m s+100 k \pi} 0.90909\right.
\end{aligned}
$$

Part d: 15 points
High-Frequency Analysis: Poles
Find the frequencies, in Hz , of the two poles limiting the high-frequency response of the amplifier. You can either use MOTC, or use the results derived in class (and written down on the class amplifier crib sheet). Hint: assume Cout is a short-circuit for this calculation

If the poles are real, give the 1 or 2 pole frequencies in Hz :

$$
\begin{aligned}
& \text { If the poles are real, give the } 1 \text { or } 2 \text { pole frequencies in } \mathrm{Hz} \text { : } \\
& f_{p 1, H F}=214 \mathrm{MV/b} \\
& f_{p 2, H F}= \\
& 7006 \mathrm{~Hz} \text { (abut } 7 \% \text {, answer suspect). }
\end{aligned}
$$

If there are 2 poles, and they are complex, give $f_{n}=\omega_{n} / 2 \pi$ and the damping factor ζ :
\qquad

$$
\left[\begin{array}{l}
R_{22}^{0}=100 \mathrm{k} / / / \mathrm{m} R=90.91 \mathrm{kn} \\
{\left[R_{22}^{0} C_{2}=90.91 \mathrm{kR}, 7.5 \sqrt{2}=6820^{5}\right.}
\end{array}\right.
$$

$$
1_{R_{11} C_{1}=3.09 \mathrm{kN}}^{1.09 \mathrm{kS} \cdot 14.44 \mathrm{~m}=44.5 \mathrm{~F}^{5}}
$$

$$
\left.\right|_{\frac{\pi}{\nabla}} ^{F_{11}} a_{1}=726 \cdot 6 p 5
$$

$$
\begin{aligned}
&{ }^{2} a_{1}=720 \\
& p_{1}\left[a_{2}=\right. R_{11}^{0} C_{1} C_{2} P_{22}^{\prime} \\
& R_{22}^{\prime}=R_{g o n} / l R_{g}
\end{aligned}
$$

$$
\begin{aligned}
&-90.91061 \\
& a_{2}=\left(R_{11} 0 c_{1}\right) e_{2} R_{22}^{\prime}=(44,5 p 5) 1.5415 \cdot 5002=1.669 \cdot 10^{-22} \sec ^{2} \\
&=(12.9 p 5)^{2}
\end{aligned}
$$

$2\left[\right.$ TRY SPA: $a_{2} / a_{1}=(12.9 p)^{2} / 727 p s=0.22 p s$ clearly well sepcrith.

$$
\begin{aligned}
& f_{n}=\omega_{n} / 2 \pi= \\
& \text {, } \zeta= \\
& \text { mote: }
\end{aligned}
$$

Part e: 7 points

High-Frequency Analysis: Zeros (there may be zero, one or two present) in the transfer Find the frequencies of any zeros (there a lysis, or use the results derived in class (and written function. You can either use nodal analysis, or use the results derived in (and down on the class amplifier crib sheet).

$$
f_{z 1}=12006 H_{z}, f_{z 2}=\frac{x}{\operatorname{costy} \text { one jew) }}, \ldots .
$$

Part f: 7 points
Low-Frequency Analysis:
Find the frequency in Hz , of the pole, due to Cout, limiting the low-frequency response of the amplifier. Use any method of analysis you choose.

$$
f_{p 1, L F}=3 \cdot 7 k / f_{8}
$$

Part g: 5 points
Drake clean asymptotic Bode Magnitude plot of $V_{\text {out }} / V_{\text {gen }}$ as a function of frequency in
Hz . Be sure to label and dime axes clearly, label pole and zero frequencies and gain slopes. Be sure to use the semi-log paper correctly

$$
\begin{aligned}
\frac{\text { rat }}{\text { Va }} & =0.966 \cdot 0.909 & & \text { low frigncong corner } \\
& =0.878 & & \text { os } 302 \mathrm{kigh} \\
& =-1.1 d s & & \text { poles } \\
& & & \\
& & & \\
& & &
\end{aligned}
$$

low trigueng corner
Q 307 k 正
howigth feature

Zplottedin theright place.
-and labelled

- and labelled.

B.

Problem 2, 25 points

In the amplifier above,
Rgen $=100 \mathrm{kOhm}, \mathrm{Rg} 1 \mathrm{a}=\mathrm{Rg} 1 \mathrm{~b}=500 \mathrm{kOhm}$,
Rs1=Rs2=100 Ohms. VDD=5Volts
$\mathrm{gm} 1=5 \mathrm{mS}, \mathrm{gm} 2=10 \mathrm{mS}$
$\mathrm{Rd} 1=1 \mathrm{kOhm}, \mathrm{Rd} 2=2 \mathrm{kOhm}, \mathrm{RL}=10 \mathrm{kOhm}$.
Cin, Cout, Cs1, Cs2 are all very large
Cgs1 $=0 \mathrm{fF}, \mathrm{Cg} 1 \mathrm{~d}=5 \mathrm{fF}, \mathrm{Cgs} 2=0 \mathrm{fF}, \mathrm{Cgd} 2=10 \mathrm{fF}$
Gds $1=G d s 2=0 \mathrm{mS}$
Part a: 4 points
draw below a small-signal representation of the circuit, but with the transistors
represented by transistor symbols, not small-signal hybrid-pi models

Part b, 6 points
Find the small-signal voltage gain of the two stages:

$$
\begin{aligned}
& \text { Vout } 1 / \text { Vin } 1=V d 1 / V g 1=\quad-5 \\
& \text { Vout } / \operatorname{Vin} 2=V \mathrm{~d} 2 / \mathrm{Vg} 2=-16.7 \\
& A_{v_{1}}=-g m_{1} \cdot R_{\text {leq }}=-g m_{1} \cdot R_{d_{1}}=-5 m s \times 1 k \Omega=-5 \\
& A v_{2}=-g m_{2}-R_{\text {leq }}=-g m_{2}-\left(R_{d_{2}} / 1 R_{L}\right)=-10 \mathrm{~ms} \cdot 1.67 \mathrm{kR} \\
& =-16.7
\end{aligned}
$$

$$
\begin{aligned}
& a 1=2,34 n s \\
& a 2=6.31 \times 10^{-20} \mathrm{~s}^{2} \\
& C_{1}=C_{g d_{1}} \quad C_{2}=\mathrm{Cgdz}_{2} . \\
& a_{1}=R_{11}^{0} C_{1}+R_{22}^{0} C_{2} \\
& R_{11}^{0}=\left(R_{g e n} / / R_{g_{1} a} / / R_{g \cdot b}\right)\left(1-A v_{1}\right)+R d_{1} \\
& =71.43 \mathrm{k} \Omega \times[1-(-5)]+1 \mathrm{k} \Omega . \\
& =429.57 \mathrm{k} \Omega \text {. } \\
& R_{22}^{0}=R d_{1} \cdot\left(1-A v_{2}\right)+R_{2} / / R R_{L} . \\
& =1 \mathrm{~K} \Omega[1-(-16.7)]+2 k \Omega / 1 / 10 \mathrm{k} \Omega \text {. } \\
& =19.37 \mathrm{~K} \Omega \\
& a_{1}=429.57 \mathrm{k} \Omega \times 5 \mathrm{fF}+19.37 \mathrm{~K} \Omega \times 10 \mathrm{fF} \\
& =2.15 \mathrm{~ns}+0.194 \mathrm{~ns}=2,34 \mathrm{~ns} . \\
& a_{2}=R_{11}^{0} C_{1} C_{2} \cdot R_{22}^{1} \\
& R_{22}^{\prime}=\left[\left(R_{g e n} / / R_{g, a} / / R_{g, b}\right) / /\left(/ g_{m m_{1}}\right) / / R_{d_{1}}\right]\left(1-A v_{2}\right) \\
& +R_{d_{2}} / / R_{l} \\
& =(71.43 \mathrm{kl} / 1200 / 11 \mathrm{~K} \Omega)-[1-(-16.7)]+2 \mathrm{k} \Omega / 1 / 0 \mathrm{k} \Omega \\
& 14 \\
& =166.28 \times 17.7+1.67 \mathrm{k} \Omega=2.94 \mathrm{k} \Omega \\
& a_{2}=429.57 \mathrm{k} \Omega \times 5 \mathrm{fF} \times 10 \mathrm{FF} \times 2.94 \mathrm{k} \Omega=6.31 \times 10^{-20} \mathrm{~s}^{2}
\end{aligned}
$$

Part d, 5 points
There may be either 1 or 2 poles of the transfer function.
If the poles are real, give the 1 or 2 pole frequencies in Hz :

$$
f_{p 1}=67.95 \mathrm{MHz} f_{p 2}=5.89 \mathrm{GHz}
$$

If there are 2 poles, and they are complex, give $f_{n}=\omega_{n} / 2 \pi$ and the damping factor ζ :

$$
\begin{aligned}
& f_{n}=a_{n} / 2 \pi=\zeta= \\
& \frac{a_{2}}{a_{1}}=26.99 p s<a_{1} \Rightarrow \text { two real separated } \\
& \text { using sPA, sPA } \\
& \text { poles }
\end{aligned}
$$

Problem 3, 30 points
Part a 5 points

Replacing the transistor with its high frequency small-signal model, draw a smallsignal equivalent circuit diagram.

$$
V_{Y}=\frac{A R C}{1+A R C} \cdot V+E 5
$$

$$
\begin{aligned}
& I_{\text {test }}=D C \cdot\left(V_{\text {trust }}-V_{g}\right)+q m\left(V \text { test }-V_{q}\right) \\
& =(q m+\Delta c)\left(v+r s x-\frac{V+r s+\Delta R c}{1+\Delta R C}\right)=(q m+\Delta C) V+s t \cdot \frac{\Delta L C}{1+\Delta R C}
\end{aligned}
$$

$$
\frac{I+a s t}{V_{t \text { test }}}=Y_{i n}=\frac{(9 m+\Delta c)}{1+D R c}
$$

$$
Z_{n}=\frac{1+A R c}{q_{n}+D c}=\frac{1}{q_{m}} \frac{1+A R c}{1+A C 1 q_{m}}
$$

Part c, 10 points
$g_{m}=1 \mathrm{mS} . \mathrm{R}=100 \mathrm{kOhm}, \mathrm{C}=1 \mathrm{pF}$
Find the frequencies of any zeros (there may be zero, one or two present) in $\mathrm{Z}(\mathrm{s})$:
$f_{z 1}=1.59 / N H z f_{z 2}=$ \qquad ,

There may be either 1 or 2 poles in $\mathrm{Z}(\mathrm{s})$.
If the poles are real, give the 1 or 2 pole frequencies in Hz :
$f_{p 1}=159 \mathrm{MHz}, f_{p 2}=$ \qquad
If there are 2 poles, and they are complex, give $f_{n}=\omega_{n} / 2 \pi$ and the damping factor ζ : $f_{n}=\omega_{n} / 2 \pi=$ \qquad , $\zeta=$ \qquad

$$
\begin{aligned}
& f_{z_{1}}=\frac{1}{2 \pi 0 b_{1}}=1.59 \mathrm{M} H_{z} \\
& f_{p_{1}}=\frac{1}{2 \pi a_{1}}=159 \mathrm{MHz}
\end{aligned}
$$

Can you describe the behavior of $\mathrm{Z}(\mathrm{s})$ in terms of a simpler equivalent circuit ?

- In low frequency, C behaves like open,

- As frequency increases, $Z(s)$ increases che to the low frequency zero.
- In high frequency, C behaves liker short,

$$
z=R .
$$

